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VASCO: Volume and Surface Co-Decomposition for Hybrid
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Fig. 1. The proposed work introduces a novel computational framework that aims to minimize the number of transitions between additive and subtractive
manufacturing processes while ensuring tool accessibility in manufacturing a complex object. This figure shows the Coral model, presumerably manufactured
additively, has surface regions that cannot be reached by any subtractive cutter (represented by red dots in the leftmost figure). To address the tool accessibility
constraints, the Coral model is divided into three components, corresponding to three interleaving manufacturing steps, referred to as "AM-then-SM." These
steps produce volume and surface segmentation, resulting in the creation of hybrid-fabricable blocks (represented by the green, blue, and yellow regions). The
additive and subtractive manufacturing sequence of the Coral model is visualized using numbered labels in sequential order, such as {𝐴1, 𝑆1, 𝐴2, 𝑆2, 𝐴3, 𝑆3}.
The print directions for the hybrid-fabricable blocks are indicated by arrows. The right image displays the physical fabrication outcome of the Coral model.
It demonstrates that the proposed framework, known as ASHM (Additive-Subtractive Hybrid Manufacturing), can enhance surface quality, especially for
inaccessible surfaces, by leveraging the combined strengths of additive and subtractive manufacturing techniques to fabricate complex geometries.

Additive and subtractive hybrid manufacturing (ASHM) involves the alter-
nating use of additive and subtractive manufacturing techniques, which
provides unique advantages for fabricating complex geometries with other-
wise inaccessible surfaces. However, a significant challenge lies in ensuring
tool accessibility during both fabrication procedures, as the object shape
may change dramatically, and different parts of the shape are interdependent.
In this study, we propose a computational framework to optimize the plan-
ning of additive and subtractive sequences while ensuring tool accessibility.
Our goal is to minimize the switching between additive and subtractive
processes to achieve efficient fabrication while maintaining product quality.
We approach the problem by formulating it as a Volume-And-Surface-CO-
decomposition (VASCO) problem. First, we slice volumes into slabs and
build a dynamic-directed graph to encode manufacturing constraints, with
each node representing a slab and direction reflecting operation order. We
introduce a novel geometry property called hybrid-fabricability for a pair
of additive and subtractive procedures. Then, we propose a beam-guided
top-down block decomposition algorithm to solve the VASCO problem. We
apply our solution to a 5-axis hybrid manufacturing platform and evalu-
ate various 3D shapes. Finally, we assess the performance of our approach
through both physical and simulated manufacturing evaluations.

CCS Concepts: • Computing methodologies→ Shape modeling; Graph-
ics systems and interfaces.
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1 INTRODUCTION
The computer graphics community has raised a growing interest in
both additive manufacturing (AM) and subtractive manufacturing
(SM), especially 3D printing and CNC machining [Bartoň et al. 2021;
Bickel et al. 2018; Martínez et al. 2017; Zhao et al. 2018]. However,
few works have considered combining both’s capabilities, lever-
aging 3D printing’s strength in fabricating complex geometries
with high material utilization and CNC machining’s strengths in
high machining precision and high-quality surface finishes. Such
hybrid manufacturing technology is called additive/subtractive
hybrid manufacturing (ASHM) [Dilberoglu et al. 2021]. Pure
additive manufacturing features near-net-shape fabrication with
minimal material waste, but its accuracy and surface quality may
not be suitable for precision engineering. Compared to 3D printing,
ASHM would remove the staircase artifact raised by layered fabri-
cation and realize higher product precision with superior surface
finishes. However, post-processing inaccessible surfaces with a sim-
ple additive-then-post-smoothing process, like post-CNC machin-
ing, can be difficult. While abrasive flow machining (AFM) can be
used, it may cause random shape changes or undetectable structural
damage and cannot guarantee fabrication precision. Furthermore,
current 3D printing is believed to be one order of magnitude less
precise than CNC machining, and simply increasing resolution is
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(a) injection mold1 (b) exhaust manifold2 (c) impeller3

Fig. 2. The typical applications of ASHM. The intricate inner surfaces of
the channels in injection molds (a) and exhaust manifolds (b) significantly
enhance heat dissipation efficiency and increase exhaust velocity due to their
high dimensional accuracy. The use of high-precision free-form surfaces in
the impeller (c) is crucial in minimizing vibration and noise levels.

insufficient to meet precision requirements. In contrast to CNC
machining, ASHM is more flexible in manufacturing complicated
structural parts with radical geometries. Therefore, interchanging
between AM and SM to form the ASHM strategy is superior to
the AM technique alone. Typical applications of ASHM include
device parts for computational photography, microfluidic devices
with precise internal channels, injection molds with conformal cool-
ing channels, exhaust manifold, and engine heat exchangers with
regenerative cooling channels [Behandish et al. 2018; Dezaki et al.
2022]; see Figure 2. However, hybrid manufacturing has to simulta-
neously consider computational geometry processes from additive
and subtractive manufacturing, which are far from fully automatic,
particularly for general complex geometries [Chen et al. 2018b].

Hybrid manufacturing, which combines additive manufacturing
(AM) and subtractive machining (SM), utilizes a print head to con-
struct 3D volumes through layered material deposition (each layer is
a slicing planar of the object)4, while employing a CNC machining
cutter to remove material from a 3D surface by following designated
spatial curves. The ASHM (Additive-Subtractive Hybrid Manufac-
turing) platform, as depicted in Figure 1, facilitates multi-directional
3D printing and 5-axis milling, thus providing enhanced movement
flexibility. In this study, we adopt the ASHM platform, and the man-
ufacturing process entails a series of "AM-then-SM" stages. Within
each stage, the print head initially generates a 3D solid volume,
which is then subjected to a surface machining step to sculpt the
corresponding 3D surface of the additive 3D volume. A critical
aspect of the process is Sequence planning, which involves deter-
mining the alternating sequence {𝐴1, 𝑆1, 𝐴2, 𝑆2, ..., 𝐴𝑛, 𝑆𝑛}, where
𝐴 and 𝑆 represent additive and subtractive steps, respectively [Chen
et al. 2018b].
The primary objective of sequence planning in hybrid manufac-

turing is to minimize the number of "AM-then-SM" switches. Each
switch involving 𝐴𝑖 or 𝑆𝑖 necessitates recalibration and specific
pre-processing of the print head or CNC cutter, which can have a
substantial impact on manufacturing efficiency. Furthermore, the
locations where process switching occurs often result in undesired
1Hong Kong Productivity Council (HKPC), https://www.innovationhub.hk/article/3d-
conformal-cooling-mould
2https://caautoparts.com/products/tm-4afe-s-t25
3HILLTOP, https://www.pinterest.jp/pin/311733605430810230/
4This paper defines the concept of a slab to refer to the portion between two consecutive
planar layers.

(a) (b) (c)

Fig. 3. The figure illustrates the 2D shape being decomposed into three
regions (a). (b) shows the AM process followed by the two regions’ SM
process (c), supposing the print head and machining cutter can only point
downward. The first green region is a hybrid-fabricable block, that can be
successfully manufactured. However, for the second blue region 2, collisions
occur between the tool and the upper right corner of the model during the
subtractive process when reaching the concave area. As a result, it cannot
be considered as a block.

finishing artifacts, thereby affecting both surface quality and manu-
facturing precision. Hence, an optimal sequence planning strategy
aims to minimize process switches while considering machining
efficiency and product quality. However, it is worth noting that
this problem is inherently challenging, as demonstrated by the NP-
hardness of single volume decomposition [FEKETE and MITCHELL
2001]. Providing a formal NP-hardness proof for this specific prob-
lem lies outside the scope of our work. As we know, no existing
works address this problem to general sequence planning scenarios
without restrictions on the target shapes, the hybrid sequence cycles,
or manufacturing degrees of freedom [Behandish et al. 2018; Chen
et al. 2020, 2018b; Harabin and Behandish 2022; Liu et al. 2019a].
The key challenge in sequence planning for hybrid manufactur-

ing lies in the significant shape transformations that occur at each
"AM-then-SM" stage, leading to dynamic changes in tool accessibil-
ity. These variations pose considerable complexity to the sequence
planning process. It is imperative that each 𝐴 or 𝑆 manufacturing
process adheres to tool accessibility constraints and manufacturing
dependency constraints. Tool accessibility constraints ensure that
the print head or CNC cutter avoids collisions with the realized
shape and the ASHM machine itself. Additionally, manufacturing
operations must respect precedence constraints, meaning that they
cannot be executed before the completion of the prerequisite steps
on which they rely. It is noteworthy that the formulation of these
manufacturing constraints is discussed in detail in subsection 3.2.
In the ASHM process, AM and SM steps consistently alternate.

Each AM stage in the ASHM sequence is responsible for produc-
ing specific 3D volumes, adhering to a predetermined set of print
head directions. As a result, planning the sequence of AM steps
equates to a volume decomposition challenge. Conversely, every
SM phase involves machining distinct 3D surfaces based on a des-
ignated set of CNC cutter directions. This makes the planning of
SM steps analogous to a surface decomposition issue. We formu-
late the joint optimization of AM (volume decomposition) and SM
steps (surface decomposition) in ASHM sequence planning as the
"Volume-And-Surface-CO-decomposition, VASCO" problem. Our
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(a) (b) (c)

Fig. 4. One desired property of hybrid-fabricable block for shorting the
ASHM sequence: the blocks realized in the early stages should include as
many inaccessible regions as possible. In this illustration, we suppose the
print head and machining cutter can only point downward. (a) The red dots
represent the inaccessible areas that cannot be reached by the CNC cutter
when machining on the entire object’s surface, while the green dots indicate
the areas that collide with the cutter. (b) In the scenario where the first
green block excludes these inaccessible areas, it requires a total of 4 blocks.
(c) In contrast, when the first green block includes these inaccessible areas,
only 2 blocks are needed to manufacture the shape using ASHM.

key insight is that these two stages can be seamlessly integrated
into a single optimization procedure. We introduce the concept of a
hybrid-fabricable block, which refers to a pair of 3D volumes and
surfaces that can be accessed by the respective manufacturing di-
rections of ASHM, as illustrated in Figure 3. Hybrid-fabricability
characterizes the property of such a block. The first green region
represents a valid block, while the second blue region fails to meet
the requirements due to collisions that occur during the subtractive
manufacturing process. In this paper, we use the term "block" as an
abbreviation for hybrid-fabricable block , the proposed solution to
the VASCO problem aims to optimize the decomposition of blocks
while considering both AM accessibility and SM accessibility.

We propose an iterative top-down decomposition algorithm to
simplify the general VASCO problem. The top-down strategy has
proved effective for multi-directional manufacturing [Chen et al.
2018b; Wu et al. 2020b]. It progressively decomposes a fabricable
sub-part from the input shape until the entire shape is decomposed,
where each iteration produces a block from the realized shape. Then,
by reversing the order of decomposed blocks, a feasible ASHM
manufacturing sequence is produced (see Figure 5).
The key technical challenge lies in how to produce one desired

block which can be hybrid-fabricable for ASHM. Our solution is to
encode all ASHM manufacturing constraints with a well-defined
slab-based dynamic-directed graph, where each node is a slicing
slab and edges between nodes are well-defined to formulate the tool
accessibility and the manufacturing dependency constraints. Then,
a block decomposition strategy is proposed by merging these slab
nodes of the directed graph. We have observed that the selection
of different AM directions for each block significantly affects the
length of the sequence planning. Therefore, we develop a beam-
guided search scheme to explore additional possibilities for ASHM
direction selection. Furthermore, a set of block desired properties are
introduced to help shorten the whole sequence (see one property
in Figure 4). The beam-guided strategy can greatly enhance the
local-optimum results achieved through a greedy scheme.
This paper applies these ideas to the 5-axis hybrid manufactur-

ing platform where the machining cutter and print head rotate on

the B and C rotation axes and move along X, Y, and Z in a linear
direction. Such a 5-axis platform is mainly used for Directed Energy
Deposition (DED) of metals. Given the platform’s high degree of
freedom, numerous viable manufacturing options exist, including
flat or curved print layers, 3+2 or five-axis simultaneous machining
strategies, support-free approaches, and the choice between manu-
facturing from scratch or utilizing existing parts. Covering all these
options within a single paper is impractical. Hence, we focus on
an initial attempt to investigate sequence planning scenarios at an
appropriate level of complexity: support-free hybrid manufacturing
from scratch, utilizing flat print slicing slabs and a 3+2 machining
strategy. The efficiency of our VASCO algorithm is demonstrated
through its application to diverse 3D target shapes, with an average
execution time of approximately 6 minutes for moderately complex
shapes. Physical and simulated hybrid manufacturing evaluations
are also proposed, providing results that confirm the efficacy of
our method in solving the ASHM sequence planning problem. Our
solution exhibits sufficient generality to be extended to encompass
other manufacturing options, with further discussion available in
the result and conclusion sections.

2 RELATED WORK
This section first reviews the existing sequence planning works
for ASHM, mainly from the mechanical field. Then we review the
manufacturing-oriented shape decomposition frameworks proposed
in the graphic domain, which can be grouped with and without
considering manufacturing dependency constraints.

2.1 Sequence Planning for ASHM
ASHM techniques have experienced rapid development in recent
years [Dezaki et al. 2022; Dilberoglu et al. 2021; Feldhausen et al.
2022; Flynn et al. 2016]. In line with the hardware advances, effec-
tive and efficient sequence planning is in high demand. There is
significant progress on the sequence planning problem for ASHM
from CAD/CAM community; however, the current state of hybrid
manufacturing still falls short in fully exploiting the limitless poten-
tial offered by its capabilities. Most current hybrid process planning
practices in engineering still rely on the operator’s expertise. For
example, commercial CAM software like SIEMENS NX supports AM
and SM planning, but relies on the user to provide the sequences.

Sequence planning by search space restrictions. Due to the essen-
tial complexity of the sequence planning problem, existing methods
mostly tackled the problem by imposing some restrictions, such
that the dynamic ASHM accessibility and manufacturing depen-
dency constraints can be simplified, and thus the solving space is
shrunk. These works could be divided into three groups by what
is restricted: 1) target shapes, include planar surfaces [Zhang et al.
2020], symmetric shapes [Chen and Frank 2019], shapes consisting
of swept volumes [Xiao and Joshi 2020a], or columnar shapes [Chen
et al. 2020, 2018b; Liu et al. 2019a]; 2) A/S sequence cycles, [Chen
and Frank 2019] fixed the A/S sequence to only one cycle as S/A/S;
3) manufacturing degrees of freedom (DOF), [Behandish et al. 2018;
Chen et al. 2020, 2018b; Harabin and Behandish 2022] restricted the
AM process with the fixed direction, or with an additional rotational
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axis. In contrast, our work addresses the general sequence planning
problem without these above restrictions.

Hybrid manufacturing-oriented Design. Design optimization for
hybrid manufacturing is also considered in the literature [Liu et al.
2019b]. 2.5D machining features are inserted and treated as op-
timization primitives alongside the freeform structural topology
optimization to ensure the post-machinability of quality-demanding
surfaces. In [Liu and To 2016; Liu et al. 2019b], topology optimization
is performed under the subtractive-first and then-additive remanu-
facturing strategy to create optimum product varieties for reusage.
[Han et al. 2019] proposes a geometry approach for topology op-
timization of continuum structure. However, the current hybrid
manufacturing-oriented design optimization mostly considers one
AM-SM cycle, while the integration with a multiple-switching se-
quence is still an open problem.

2.2 Decomposition with dependency constraint
The shape decomposition problem considering manufacturing de-
pendency constraints also exists in AM or SM. Depending on the
fabrication element, it is tailored into volumetric- or layer-based
decomposition.

Volumetric shape decomposition. Decomposing the given shape
into a minimal number of sub-parts such that they are printed in dif-
ferent directions without support structures on a multi-directional
3+2-axis printing platform is a relevant problem to ours. It can be
seen as the AM aspect of VASCO. Methods employ different strate-
gies to solve this problem, like the flooding expansion algorithm
that only works for simple topologies [Xu et al. 2019], or (accel-
erated) beam search for general shapes [Wu et al. 2020a,b]. They
take a recursive downward search, i.e., the plane-clipping order
is the inverse of the fabrication sequence. Especially in [Wu et al.
2020a,b], each clipping plane cuts the whole shape, which is a con-
servative choice for minimizing the number of sub-parts, such that
the collision avoidance between the nozzle and realized workpiece
is naturally satisfied. [Xiao and Joshi 2020b] consider multiple build-
ing directions for one sub-part to reduce the number of decomposed
volumes. We got inspiration from these two ideas, i.e., downward
search and multiple-plane in each local cutting. The difference is
that we consider the dynamic change of the manufacturing con-
straints and encode them into a newly defined restricted graph, such
that the search space is enlarged and the results are optimized.

Resembling the SM aspect of VASCO, [Mahdavi-Amiri et al. 2020]
formulate the carvable volume decomposition problem for 3-axis
CNC rough machining, to obtain a minimal set of carvable volumes
with sequences. Similarly, we define the block that integrates both
AM and SM constraints.

Layer-based decomposition. The sliced layer can also be regarded
as an elementary of shape decomposition, where the shape decom-
position is operated based on a layer-based graph [Kaplan et al.
2022; Zhong et al. 2022]. Specifically, [Zhong et al. 2022] focuses on
optimizing toolpath continuity in the fabrication process of surface
models using 3-axis 3D printers. To achieve this, they formulate
the continuity optimization problem as a surface decomposition
problem, wherein the surface model is decomposed into a minimum

number of surface patches that can be printed continuously. To ad-
dress this problem, the authors propose a bottom-up patch merging
procedure that utilizes a unified graph of sliced layers to encode
the additive accessibility constraint and printing order dependency.
Similar to previous work, we use an over-decomposition layer-based
graph to represent the search space. However, two key differences
in our approach are that: 1) we consider subtractive constraint, and
accordingly, we dynamically update two additional graphs during
optimization; 2) our decomposition goals differ from the previous
approach, which leads to different merging criteria. For multi-axis
additive manufacturing, curved layers have advantages in achiev-
ing multiple objectives like support-free, strength reinforcement,
and surface quality [Dai et al. 2018; Etienne et al. 2019; Fang et al.
2020; Zhang et al. 2022]. It works well on the platforms, especially
with the control systems continuously moving all DOFs but with
no dramatic change during material deposition.

2.3 Decomposition without dependency constraint
A majority of shape decomposition problems in manufacturing do
not need to consider the manufacturing dependency constraint. In
most scenarios, decomposition followed by assembly and with static
rather than dynamic accessibility, like the divide-and-conquer strat-
egy, has been widely applied to fulfill the target shapes effectively
and efficiently while maximizing the fabrication capabilities.

Decomposition for additive manufacturing. The graphics domain
has proposed many decomposition algorithms for additive manufac-
turing without any dependency constraints. For large object manu-
facturing, a minimal number of sub-parts are decomposed to assem-
ble a large object [Chen et al. 2018a, 2015; Luo et al. 2012; Muntoni
et al. 2018; Song et al. 2016]. To optimize the surface finish quality,
researchers tailor the plane-cutting volume decomposition problem
for minimizing support structures [Hu et al. 2014; Karasik et al.
2019], or decompose the object for reducing visual artifacts [Filoscia
et al. 2020; Wang et al. 2016]. Multiple materials fabrication also
leads to the shape decomposition problem, including the volume
decomposition based on a given surface partition [Araújo et al. 2019;
Liu et al. 2021].

Decomposition for molding and machining. Shape decomposition
is also employed for fabricating freeform 3D objects with classical
manufacturing techniques, such as surface decomposition for mold-
ing [Lin and Quang 2014; Malomo et al. 2016; Nakashima et al. 2018],
volume decomposition formolding [Alderighi et al. 2021, 2019, 2018],
height-field decomposition for machining [Herholz et al. 2015; Zhao
et al. 2018] and volume decomposition for hot-wire cutting [Duenser
et al. 2020]. The major difference between the above works with
ours is that the split parts are also fabricated separately, with no
manufacturing dependency constraints. Although assemblability
constraints [Wang et al. 2021] or molding constraints [Alderighi
et al. 2022], i.e., the collision avoidance among subparts, or even
interlocking constraints [Chen et al. 2022] is taken into account,
these methods can hardly be adapted to the VASCO problem, whose
constraints are dynamic and among both parts and machine tools.
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Fig. 5. We propose an iteration top-down decomposition algorithm for solving the VASCO problem. (1) It progressively decomposes a hybrid-fabricable
block from the input Coral shape until the entire shape is decomposed. Each top-down decomposition iteration generates a hybrid-fabricable block with a
randomly determined additive direction (deep red arrows). This figure shows three iterations, resulting in three blocks (the green, yellow, and red regions). (2)
We visualize the procedure to produce one block of the 2nd iteration, where our solution is to encode all ASHM constraints with a well-defined slab-based
dynamic-directed graph𝐺𝐴𝑆𝑀

2 , followed by a greed node merging process to generate blocks. To build𝐺𝐴𝑆𝑀
2 called a hybrid block graph, (2-1) we need first

to build a subtractive block graph𝐺𝑆𝑀
2 to encode the subtractive accessibility constraints, (2-2) and an additive block graph𝐺𝐴𝑀

2 to encode the additive
accessibility and dependency constraints. (2-3) Then integrate𝐺𝑆𝑀

2 and𝐺𝐴𝑀
2 to𝐺𝐴𝑆𝑀

2 . (2-4) The hybrid-fabricable block is generated based on𝐺𝐴𝑆𝑀
2 with a

greed node merging algorithm. (3) Finally, by reversing the order of decomposed blocks, a feasible ASHM manufacturing sequence is produced.

3 OVERVIEW AND MANUFACTURING CONSTRAINTS
This section first restates the basic idea of our VASCO framework
with an overview of our algorithm (Figure 5). Then clarifies the
manufacturing constraints considered in ASHM sequence planning,
i.e., additive accessibility, subtractive accessibility, manufacturing
dependency constraint, and self-support constraint.

3.1 Algorithm Overview
Our algorithm takes as input a 3D object𝑀 represented by a bound-
ary triangular mesh. We aim to generate the shortest fabrication
sequence {𝐴1, 𝑆1, 𝐴2, 𝑆2, ..., 𝐴𝑛, 𝑆𝑛} to realize 𝑀 by ASHM. Recall
that we formulate the sequence planning problem as the "Volume-
And-Surface-CO-decomposition, VASCO" problem, decomposing𝑀
into an ordered sequence of blocks B = {𝐵1, 𝐵2, ..., 𝐵𝑁 }. Note that
the sequence of blocks is reversed to the fabrication sequence. That
is, each block 𝐵𝑖 can be only manufactured once all the subsequent
blocks {𝐵𝑖+1, 𝐵𝑖+2, ..., 𝐵𝑁 } have been manufactured by ASHM. The
optimization formulation of the VASCO problem is provided:

min
B={𝐵1,𝐵2,...,𝐵𝑁 }

𝑁 = |B|

𝑠 .𝑡 . 𝐵𝑖 = {𝑀𝑖 , 𝐷
𝐴𝑀
𝑖

, 𝐷𝑆𝑀
𝑖
}, 𝑖 = 1...𝑁

𝑀𝑖 = 𝜕𝑀𝑖 ∪℧𝑀𝑖 , 𝑖 = 1...𝑁
℧𝑀 = ∪𝑁

𝑖=1 (℧𝑀𝑖 )
𝜕𝑀 = ∪𝑁

𝑖=1 (𝜕𝑀𝑖 )
℧𝑀𝑖 ∩℧𝑀𝑗 = 𝜕𝑀𝑖 ∩ 𝜕𝑀 𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1...𝑁
℧𝑀𝑖 is fabricable by AM from 𝐷𝐴𝑀

𝑖
, 𝑖 = 1...𝑁

𝜕𝑀𝑖 is fabricable by SM from 𝐷𝑆𝑀
𝑖

, 𝑖 = 1...𝑁

(1)

where ∪ and ∩ indicate the union and intersection operators, sep-
arately. This paper uses 𝜕 to represent the outer surface of a 3D
object, and ℧ is for the inner volume of a 3D object, ℧𝑀 = 𝑀 \ 𝜕𝑀 .
Each block 𝐵𝑖 is associated with a specific sub-part of the input
3D object, represented as 𝑀𝑖 . We refer ∪𝑁

𝑗=𝑖+1𝑀𝑗 as the realized
shape for 𝑀𝑖 . While applying the "AM-then-SM" stage to realize
𝑀𝑖 , no collisions are allowed with the realized shape ∪𝑁

𝑗=𝑖+1𝑀𝑗

and the ASHM machine itself, including the print head and CNC
cutter. The internal volume ℧𝑀𝑖 is a self-support structure and
fabricable using an AM process with a set of print head directions
𝐷𝐴𝑀
𝑖

= {𝑑𝐴𝑀
𝑖,1 , 𝑑𝐴𝑀

𝑖,2 , ..., 𝑑𝐴𝑀
𝑖,𝑛
}. Then its outer surface 𝜕𝑀𝑖 is carved

by a subsequent SM process with a set of CNC cutter directions
𝐷𝑆𝑀
𝑖

= {𝑑𝑆𝑀
𝑖,1 , 𝑑𝑆𝑀

𝑖,2 , ..., 𝑑𝑆𝑀
𝑖,𝑛
}. As indicated, the outer surfaces or in-

ner volumes of any two blocks must not overlap or have duplicates.

To address the VASCO optimization problem, we employ a heuris-
tic iterative solution based on a top-down decomposition procedure.
Each 𝑖-th iteration generates block 𝐵𝑖 from the current realizing
object 𝑀𝑖 = 𝑀 \ ∪𝑖−1

𝑗=1𝑀𝑗 , with a randomly determined direction
𝑑𝐴𝑀
𝑖,1 as the AM direction of 𝐵𝑖 . The top-down strategy continues
until the entire shape 𝑀 is decomposed, as shown in Figure 5. By
reversing the order of the decomposed blocks, we generate a feasible
ASHM manufacturing sequence. section 4 details generating one
desired block 𝐵𝑖 in one top-down iteration. We encode all ASHM
manufacturing constraints using a well-defined slab-based dynamic-
directed graph, followed by a greedy node merging procedure to
generate blocks. In section 5, we introduce a beam-guided search
scheme to explore additional possibilities for ASHM direction selec-
tion to generate large number of candidate blocks, and select optimal
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Fig. 6. Illustration of manufacturing constraints with four failure cases. (a)
Additive accessibility constraint: collision between the print head and the
realized part during AM. (b) Subtractive accessibility constraint: collision
between the machining cutter and the model during SM. (c) Additive de-
pendency constraint: without using support structures, a slicing slab can
be printed only after its precedence slabs. (d) Subtractive dependency con-
straint: the machining cutter cannot carve over an in-existent 3D surface.

combination from them. For clarity of exposition, we explain the
methodology for 2D illustrations. 5

3.2 Manufacturing Constraints
As mentioned before, our current solution is based on support-free
hybrid manufacturing from scratch using flat print slicing slabs and
a 3+2 machining strategy, where two manufacturing collision-free
related constraints (additive accessibility constraint and subtractive
accessibility constraint), one manufacturing dependency constraint,
and a self-support constraint would be the key manufacturing con-
straints to be considered during sequence planning.

Additive accessibility constraint. In the conventional 3-axis lay-
ered fabrication, collisions between the print head and the realized
part aren’t going to exist since the realized part is consistently below
the current print slab. However, for the 5-axis additive process of
our ASHM setting, different blocks may apply different print orien-
tations, where we should avoid collisions between the print head
and the realized part, see Figure 6(a). In this paper, such collision-
free manufacturing constraint is formulated as additive accessibility,
which is computed in subsection 4.2.

Subtractive accessibility constraint. Similar to additive accessi-
bility, subtractive accessibility is used to guarantee collision-free
between the machining cutter and the realized part during the
subtractive manufacturing step of ASHM, see Figure 6(b). The sub-
tractive process of ASHM corresponds to the fine-machining stage
of the conventional CNC machining process, where a ball-end CNC
cutter would further carve the external 3D surface to increase the
surface quality by removing all staircase artifacts raised by additive
layered fabrication. This constraint is computed in subsection 4.1.

Dependency constraint. This constraint is to formulate the de-
pendency relationships between different manufacturing stages of
ASHM, which means that a manufacturing operation cannot be
applied without completing the precedence steps on which it re-
lies, named dependency constraint. For additive manufacturing, a
block can only be printed on a realized part, and a slicing slab can

5The pseudocode for the algorithm, along with the introduced concepts and mathemat-
ical symbols, can be found in the supplementary material.

be printed only after some other slabs, shown in Figure 6(c). For
subtractive manufacturing, it indicates that the machining cutter
cannot carve over an in-existent 3D surface (Figure 6(d)).

Self-support constraint. Since support structures may damage the
areas where have been machined, achieving self-supporting print-
ing is necessary. Following [Wu et al. 2020a], we formulate the
self-support constraint on each sampling point 𝑝 of the target shape.
A maximal self-supporting angle 𝛼𝑚𝑎𝑥 is included to restrict the
surface normal of all sampling points from the current print direc-
tion, 𝑛𝑝 · 𝑑 + 𝑠𝑖𝑛(𝛼𝑚𝑎𝑥 ) ≥ 0, where 𝑛𝑝 is the unit normal vector of
𝑝 , 𝑑 is the unit direction vector of print. We set 𝛼𝑚𝑎𝑥 to 50°. This
constraint would be applied in subsection 4.4.

4 CO-DECOMPOSITION METHOD
This section details the method to decompose 𝐵𝑖 in 𝑖-th iteration
(𝑖 is initialized as 1) from the realizing 3D object 𝑀𝑖 (initialized
as the input object 𝑀 , 𝑀𝑖 = 𝑀 \ ∪𝑖−1

𝑗=1𝑀𝑗 ) with a determined AM
direction 𝑑𝐴𝑀

𝑖,1 . Inspired by [Zhong et al. 2022], we apply an over-
segmentation-then-merging strategy. With uniformly slicing 𝑀𝑖

with flat planers vertical to an AM direction, the result of slicing
slabs is taken as the over-segmented-small-scale blocks, which will
be further merged into large-scale blocks with guaranteeing hybrid-
fabricable for ASHM.
Our key idea is to encode all ASHM manufacturing constraints

with a well-defined dynamic-directed graph, hybrid block graph,
𝐺𝐴𝑆𝑀
𝑖

, whose nodes are slicing slabs and edges encode ASHM con-
straints such as AM/SM tool accessibility, manufacturing depen-
dency, etc. To build 𝐺𝐴𝑆𝑀

𝑖
, we need first to build a subtractive block

graph 𝐺𝑆𝑀
𝑖

, and a additive block graph 𝐺𝐴𝑀
𝑖

. 𝐺𝑆𝑀
𝑖

encodes the sub-
tractive accessibility constraint to carve 𝜕𝑀𝑖 by SM from a group
of potential SM directions (subsection 4.1). 𝐺𝐴𝑀

𝑖
encodes the addi-

tive accessibility constraint, additive dependency constraint, and
self-support constraint to print ℧𝑀𝑖 by AM (subsection 4.2). Then
integrate 𝐺𝑆𝑀

𝑖
and 𝐺𝐴𝑀

𝑖
to the hybrid block graph𝐺𝐴𝑆𝑀

𝑖
(subsec-

tion 4.3). Finally, we generate a large-scale block with a greedy node
merging procedure from 𝐺𝐴𝑆𝑀

𝑖
(subsection 4.4).

4.1 Subtractive Block Graph
When segmenting 𝐵𝑖 from the realizing object 𝑀𝑖 , it is crucial to
determine whether an area is accessible of the object surface 𝜕𝑀𝑖

using a specific machining cutter direction and to identify the cause
of the collision if it’s inaccessible.
To gather this information on subtractive accessibility, we con-

struct the subtractive block graph 𝐺𝑆𝑀
𝑖

. In this graph, nodes repre-
sent the sampling surface points of 𝜕𝑀𝑖 , and directed edges between
nodes represent their obstructing relationship from specific SM di-
rections. As shown in Figure 7(a), the purple frame indicates the
machining cutter to carve point ℎ along the vertical direction, where
six points of { 𝑗, 𝑖, 𝑓 , 𝑑, 𝑐, 𝑎} obstruct the cutter. Hence, we build six
directed edges from ℎ to { 𝑗, 𝑖, 𝑓 , 𝑑, 𝑐, 𝑎}. We associate a bit vector
to each directed edge, whose vector length equals the number of
sampling machining directions. The 𝑗-th bit indicates if the end-
point of the directed edge collides with the machining cutter when
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carving the start point from the 𝑗-th machining direction. 0 means
collision-free, while 1 indicates collision. In Figure 7(a), three sam-
pling matching directions are evaluated (↑,←,→). The bit vector
[1, 0, 0] of edge (ℎ, 𝑖) means that point 𝑖 collides with the cutter
when carving point ℎ with the vertical cutter direction (↑); point 𝑖
do not collide with the cutter when carving point ℎ with the other
two cutter direction (←,→).
In the real manufacturing, most 5-axis ASHM machines can

only orient their print head and CNC cutter downwards at an
oblique angle ranging from 0𝑜 to 90𝑜 [Dezaki et al. 2022]. There-
fore, we uniformly sample potential SM cutter directions from
the upper hemisphere of a Gaussian sphere, resulting in D𝑆𝑀 =

{𝑑𝑆𝑀1 , 𝑑𝑆𝑀2 , ..., 𝑑𝑆𝑀𝑛 } (n is 200 in our setting). The associated CNC
cutter directions 𝐷𝑆𝑀

𝑖
of the target 𝐵𝑖 is a sub set of D𝑆𝑀 .

Subtractive Block Graph in Initialization. If it’s
the 1-st iteration, we employ Lloyd’s Voronoi
relaxation algorithm to achieve uniform sam-
pling on 𝜕𝑀 . The resulting Voronoi sites are
then taken as the surface sampling points P =

{𝑝𝑆𝑀1 , 𝑝𝑆𝑀2 , ..., 𝑝𝑆𝑀𝑛 }, taken as graph nodes of
𝐺𝑆𝑀
1 . We individually attempt manufacturing

every sampling point 𝑝𝑖 using each subtractive
direction 𝑑𝑆𝑀

𝑖
. This is achieved by rotating the machining cutter in

the direction 𝑑𝑆𝑀
𝑖

to point 𝑝𝑖 . If there is no collision, we define point
𝑝𝑖 as accessible to the SM direction 𝑑𝑆𝑀

𝑖
. Otherwise, we must deter-

mine which surface sampling points obstruct the point 𝑝𝑖 . This can
be done by checking if the sampling points lie within the cutter, as
the points { 𝑗, 𝑖, 𝑓 , 𝑑, 𝑐, 𝑎} in Figure 7(a), which are inside the purple
frame of the machining cutter to carve point ℎ along the three di-
rections (↑,←,→). We build directed edges of 𝐺𝑆𝑀

1 by taking point
𝑝𝑖 as the start node and the points obstructing 𝑝𝑖 as the endpoints.
Further, we associate a bit vector for each node, which is the

union of the bit vectors of the node’s outgoing edges; for example,
the bit vector of node ℎ is [1, 1, 1] since the three directions are
inaccessible in Figure 7(a). For a bit vector where all the values at
each position are 1, its corresponding surface sampling point is
inaccessible to any sampling machining directions, called a subtrac-
tive inaccessible point (red nodes in Figure 7(a)). Otherwise, it is
an accessible point. We use green nodes indicating surface sam-
pling points that obstruct the inaccessible points. Note that we did
not record the directed edges between two accessible nodes. This
strategy can reduce memory consumption.

Subtractive Block Graph in Top-down Process. In the absence of it-
eration (𝑖 ≥ 2), building𝐺𝑆𝑀

𝑖
from𝐺𝑆𝑀

1 is relatively straightforward
process. Considering the realizing shape (𝑀𝑖 ) to be decomposed.
This can be done by first removing all nodes and related directed
edges of𝐺𝑆𝑀

1 which does not belong to𝑀𝑖 , then updating the nodes’
bit vectors. As shown in Figure 7(b), the inaccessible point "e" be-
comes accessible.

4.2 Additive Block Graph
Similar to subtractive block graph, we encode additive manufac-
turing constraints (additive accessibility, additive dependency and
self-support constraints) into additive block graph 𝐺𝐴𝑀

𝑖
. Note that

(a) (b)

Fig. 7. Illustration of subtractive block graph𝐺𝑆𝑀
𝑖

. Three matching direc-
tions are evaluated (↑,←,→). (a) For the input 3D object 𝑀 , we start to
uniformly sample points over the 3D surface of 𝑀 (2D boundary in this
illustration). The purple frame indicates the machining cutter to realizing
point ℎ along the three directions, collides with points {𝑎, 𝑐,𝑑, 𝑓 , 𝑖, 𝑗 }, en-
coded by the associated bit vector of directed edges. The directed graph
shows the result subtractive manufacturing graph, where points ℎ and 𝑒

are inaccessible (red dots). (b) Build the subtractive block graph𝐺𝑆𝑀
𝑖

, 𝑖 ≥ 2
to decompose𝑀𝑖 , where a sub-part of the top-right corner has been decom-
posed to a block in previous top-down iteration. The inaccessible point 𝑒 is
now accessible.

(a) (b)

Fig. 8. (a) Illustration of additive block graph𝐺𝐴𝑀
𝑖

, whose nodes are slicing
slabs on the left, with two types of edges, the dependency directed edges
(black edges), and the collision directed edges (purple edges). The self-
support slabs are illustratedwith a green square, and the red squares indicate
non-self-support slabs. (b) To speed up the collision detection between two
slabs, we find that the collision can be determined in some specific cases
without the time-consuming traversing process, taking slab 2 for an example:
1) slabs under slab 2 will never collide to slab 2 (slab 1); 2) slabs that depend
on slab 2 will never collide to slab 2 slab 3; 3) for slabs that do not depend
on slab 2, they will definitely collide to slab 2, if there are intersections in
the 2D projection space along the print direction, such as slabs 6, 7, 8.

each 𝐺𝐴𝑀
𝑖

only corresponds to one additive direction 𝑑𝐴𝑀
𝑖,1 . From

what we know, [Zhong et al. 2022] is the first work that builds a
directed graph to represent the dependency relationships and the
global collision constraints for the 3-axis additive manufacturing of
the surface model.
We build our 𝐺𝐴𝑀

𝑖
directly following the proposed dependency

OPP graph of [Zhong et al. 2022] except for a minor difference (see
an example in Figure 8(a)); that is, we extend nodes from slicing
surface models to solid models, where each node of𝐺𝐴𝑀

𝑖
encodes a

slicing slab of the realizing shape𝑀𝑖 .
To build our additive block graph 𝐺𝐴𝑀

𝑖
, we start by uniformly

slicing 𝑀𝑖 with flat planers vertical to 𝑑𝐴𝑀
𝑖,1 . The result of slicing

slabs is taken as the graph nodes of𝐺𝐴𝑀
𝑖

. Then build the dependency
directed edges, if the horizontal distance between two adjacent slabs
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Fig. 9. Illustration of unified accessibility analysis to build𝐺𝐴𝑆𝑀
𝑖

. (a) The
sampling surface points and slicing slabs of𝐺𝑆𝑀

𝑖
and𝐺𝐴𝑀

𝑖
. (b) The many-

to-one mapping relationship between the two graphs’ nodes by the location
of surface points. (c)𝐺𝐴𝑆𝑀

𝑖
is constructed by labeling the subtractive inac-

cessible nodes in𝐺𝐴𝑀
𝑖

. There are two non-fabricable nodes, node 𝐵 to be
inaccessible for the SM process, and node𝐶 to be non-self-support. Nodes of
𝐺𝐴𝑆𝑀
𝑖

are visualized with rounded rectangles to indicate the integration of
the two graphs’ nodes, which are visualized by circular dots and rectangles
with right corners separately.

(neighboring slicing slabs that are vertically adjacent (black edges
in Figure 8(a))) is shorter than the AM path width (2 mm), we add
a dependency directed edge of 𝐺𝐴𝑀

𝑖
from the bottom slab to the

top one. The dependency directed edges signify that the slab of
the end node of the edge can only be printed after the slab of the
start node of the edge has been printed. Printing a slab node is
only possible once all the nodes it depends on have been printed.
For the global collision constraint, we introduce another type of
directed edge called collision directed edges. We generate a collision
dependency edge between each node pair of 𝐺𝐴𝑀

𝑖
if the end slab

node collides with the print head while printing the slab of the
start node. That is done by traversing the internal areas of each
slab with the print head to determine whether other slabs collide
with it while printing the slab. Note that we must always maintain
𝐺𝐴𝑀
𝑖

as a Hasse diagram [Pemmaraju and Skiena 2003] by reducing
redundant dependency edges.
We further associate a label for each node of 𝐺𝐴𝑀

𝑖
to indicate

whether it’s self-support in 𝑑𝐴𝑀
𝑖,1 and a label for each slab node to

indicate whether there is a collision with the ASHM machine’s base
planner while printing this slab. In addition, we propose a novel
strategy to speed up further the collision detection between two
slabs, shown in Figure 8(b).

4.3 Hybrid Block Graph
We further aim to integrate the AM and SM feasibility by integrat-
ing 𝐺𝐴𝑀

𝑖
and 𝐺𝑆𝑀

𝑖
into a new directed graph 𝐺𝐴𝑆𝑀

𝑖
, whose node

encodes both the sampling points over the 3D surface of the SM
graph, and the slicing slabs of the AM graph.
We first copy 𝐺𝑆𝑀

𝑖
to 𝐺𝐴𝑆𝑀

𝑖
, then assign a new label for each

node to indicate its current subtractive accessibility. The new label
is computed from a many-to-one mapping between the nodes of
the two graphs. As Figure 9(b) shows, each surface point of 𝐺𝑆𝑀

𝑖

is mapped to its located slicing slab of 𝐺𝐴𝑀
𝑖

. The node of 𝐺𝐴𝑆𝑀
𝑖

is labeled subtractive inaccessible if its related surface points are
current subtractive inaccessible.

(a) (b) (c) (d)

Fig. 10. An example of hybrid-fabricable block generation with three node
merging iterations. The blue dashed box indicates the merging nodes in
𝐺𝐴𝑆𝑀
𝑖

to the block (the blue rounded rectangle), as the fabricable leaf nodes
𝐼 and𝐻 for the first iteration (a to b). The merging process terminates while
all nodes related to the block are not fabricable (d), such as nodes𝐶 and 𝐵.

4.4 Generating Hybrid-fabricable Block
This step aims to generate a block 𝐵𝑖 from 𝐺𝐴𝑆𝑀

𝑖
with a greedy

node merging procedure (Figure 10). Each leaf node of𝐺𝐴𝑆𝑀
𝑖

can
be taken as a block, if the leaf node is subtractive accessible, self-
support and without collisions between the ASHM machine. All
leaf nodes make up the initialized block of graph merging, which
can be further enlarged by including other non-leaf nodes. The
specific merging criteria are listed: 1) existing directed edges to the
block’s nodes; 2) subtractive accessible; 3) without destroying the
self-support constraint of the enlarged block; 4) the enlarged block
doesn’t collide with the ASHM machine. The graph merging stops
when no non-leaf nodes can be included in the block, resulting in
the generated 𝐵𝑖 as the combination of the merged nodes of slabs.

Suppose the associated𝑀 ’s sub-part of𝐵𝑖 is𝑀𝑖,1. With the current
generated block 𝐵𝑖 , we attempt to enlarge 𝐵𝑖 further by switching
to other additive directions, referring as block enlarging procedure.
To do that, we first get a new realizing object 𝑀𝑖,2 = 𝑀𝑖 \ 𝑀𝑖,1.
Then build a new additive block graph 𝐺𝐴𝑀

𝑖,2 of 𝑀𝑖,2 with another
randomly generated AM direction 𝑑𝐴𝑀

𝑖,2 . After that build the hybrid
block graph 𝐺𝐴𝑆𝑀

𝑖,2 by integrating 𝐺𝐴𝑀
𝑖,2 and 𝐺𝑆𝑀

𝑖
. Finally, we apply

the greedy node merging procedure once again from𝐺𝐴𝑆𝑀
𝑖,2 , result-

ing in block is 𝐵𝑖,2. If 𝐵𝑖,2 is not empty, we combine 𝐵𝑖,2 and 𝐵𝑖 to
one single block, and continue the block enlarging procedure until
the newly generated block is empty. Note that if the final resulting
block 𝐵𝑖 is really enlarged by applying the block enlarging procedure,
multiple AM directions are associated to 𝐵𝑖 . See the blue block of
the Coral model in Figure 18.

5 BEAM-GUIDED OPTIMIZATION
Our main motivation for applying the beam-guided strategy for
the VASCO problem is the observation that the choice of different
AM directions for each block substantially impacts the length of
the sequence planning. This section provides a detailed description
of the proposed beam-guided strategy, which aims to explore ad-
ditional possibilities for ASHM direction selection. Beam search
is a heuristic search algorithm to strike a trade-off between effi-
ciency and solution quality. In each iteration, we generate plenty
of candidate blocks with different AM direction using the method
of section 4. The core steps lie in 1) generating multiple candidate
solutions (subsection 5.1); 2) scoring the candidate’s solution, then
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Fig. 11. We have devised a beam-guided search approach to expand the possibilities for ASHM direction selection to improve upon the local-optimum results
obtained from a simple greedy scheme. This figure demonstrates the input coral model evolution for a complete decomposition of the beam-guided optimization
with three beam-guided iterations (1-2-3). Selected candidates are marked with a box during each iteration. We set the beam width𝑊𝑏𝑒𝑎𝑚 = 2 and sample
𝐷𝐴𝑀
𝐷𝑖𝑟

= 10 AM directions (deep red arrows). The numbers marked in the figure represent the block evaluation value 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐵) . (4) shows the optimal
ASHM manufacturing sequence (the top one). For easy visualization, we suppose not applying the block enlarging procedure described in subsection 4.4.

selecting the optimal𝑊𝐵𝑒𝑎𝑚 (𝑊𝐵𝑒𝑎𝑚 is set 8) (subsection 5.2); 3)
termination condition (subsection 5.3). Figure 11 demonstrates the
model evolution for a complete decomposition.

5.1 Generating candidate solutions
In the preprocessing stage of beam search, we uniformly sample
𝑁𝐴𝑀
𝐷𝑖𝑟

potential AM print head directions from the upper hemisphere
of a Gaussian sphere, resulting in D𝐴𝑀 = {𝑑𝐴𝑀1 , 𝑑𝐴𝑀2 , ..., 𝑑𝐴𝑀𝑛 } (we
generate 100 directions in our implementation). Then we call the
method discussed in section 4 with our input 3D object 𝑀 and
each sampling AM direction as input to the block co-decomposition
method. The co-decomposition method will output 𝑁𝐴𝑀

𝐷𝑖𝑟
block de-

compositions. During the iterative process, we calculate each se-
lected candidate solution’s resulting 3D object by removing the
previously generated blocks. We then call the method described
in section 4 for further processing.

5.2 Hybrid-fabricable block evaluation
This subsection proposes an evaluation function to select𝑊𝐵𝑒𝑎𝑚

best blocks from 𝑁𝐷𝑖𝑟 ×𝑊𝐵𝑒𝑎𝑚 candidate blocks during each beam
iteration. The evaluation function is to rate each candidate block,
where blocks with high evaluation scores should be beneficial for,

• minimizing the length of sequence planning: 1) each block’s
size should be as large as possible; 2) set higher priority

to the surface points that obstruct the inaccessible points
of 𝐺𝑆𝑀

1 in the top-down decomposition process; (note that
these two criteria are heuristics and do not guarantee their
effectiveness);

• manufacturing efficiency: 3) minimize the number of con-
nected components of each block, which aims to improve
the toolpath continuity by reducing the amount of transfer
movement of the print head in AM;

• manufacturing stability: 4) minimize the change in print di-
rections of two sequential blocks to avoid applying the next
AM process on a platform with staircases raised from the
previous block; 5) structure soundness to avoid generating
fragile blocks, i.e., "bridges" (elongated channel connecting
two larger parts) and "thin fins" (plate-like structures, such
as airfoil), where we should avoid decomposing such fragile
structures of 𝑀 into different blocks; 6) desired pyramid-
like shapes of blocks to improve the additive manufacturing
stability.

Figure 12 illustrates the effectiveness of each criterion by a single-
variable experiment. It’s easy to see that the first two criteria are
really beneficial for minimizing the number of blocks. We attempt
the further analyze the two criteria with an ablation study in Fig-
ure 13. While the other four criteria would conflict with that goal.
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Fig. 12. Single variable comparison of each evaluation criterion, where we
evaluate the generated blocks with only considering one of the six criteria.
From left to right, this figure shows the decomposition results of (1) "Size of
block"; (2) "Surface point priority"; (3) "Block connectivity"; (4) "Changing in
print directions"; (5) "Structure soundness"; (6) "Pyramid-like shapes". The
number of resulting blocks is indicated in the figure.

Fig. 13. Criteria analysis with an ablation study, with three block decom-
position results generated by 1) a baseline method, in which we randomly
select blocks during each beam search iteration (green bar and line charts);
2) only take the "size of block" criterion as the block evaluation function
(blue bar and line charts); 3) take the "size of block" and "surface point pri-
ority" criteria as the block evaluation function (yellow bar and line charts).
The three methods produce 11, 6, and 5 blocks, separately. The bar chart
illustrates how many inaccessible nodes of𝐺𝑆𝑀

1 would be realized within
each block. The line chart illustrates the size of each block.

We propose a weighted evaluation function to sum up them:

𝐹 (𝐵) =
∑︁

𝑤𝑘 𝑓𝑘 (𝐵), 𝑘 ∈ [1, 2, ..., 6] (2)

where𝑤𝑘 is chosen to trade-off between different criteria, and each
criterion term is normalized to be between zero and one. We set
𝑤1 = 𝑤2 = 0.4,𝑤𝑘 = 0.05, 𝑘 ∈ [3, 4, 5, 6]. This subsection will detail
the first two criteria and demonstrate their impact, while the last
four are formulated in the supplementary material.

Size of block. Making block as large as possible is a straightfor-
ward heuristic to minimize the number of "AM-then-SM" steps.
Compared to small blocks, bigger blocks gives a better chance of
minimizing the total number of blocks. Since we produce the block
decomposition based on slicing slabs, we perform an approximation
method to evaluate the size of a block 𝐵 efficiently, where we sum
up the length of its slabs’ bottom contours:

𝑓𝑠𝑖𝑧𝑒 (𝐵) =
∑︁

𝐿𝑒𝑛𝑔𝑡ℎ(𝑠𝐵), 𝑠𝐵 ∈ 𝑆𝐵 (3)

where 𝑆𝐵 indicates the set of all slabs in 𝐵, 𝑠𝐵 is one slab of 𝑆𝐵 , and
𝐿𝑒𝑛𝑔𝑡ℎ(𝑠𝐵) is the length of the bottom contour of 𝑠𝐵 .

Fig. 14. Multiple decomposition results from the beam search, with the
identical number of blocks. For the model Julia vase, we show two solutions
with identical 4 blocks. This figure shows the front and back views of the
two solutions. The bar chart visualizes four measurement values following
the last four criteria, in which a smaller value means better. The first solution
is with better changing in print directions and structure soundness, and the
second solution is with better pyramid-like shapes.

Surface point priority. As told in section 1, during the top-down
decomposition process, the generated blocks should include as many
as possible regions that would obscure the inaccessible regions
of 𝐺𝑆𝑀

1 . We suppose to set higher priority to the surface points
that obstruct the inaccessible points of 𝐺𝑆𝑀

1 . That can be done by
computing a "priority value" of each surface point, which is the
number of inaccessible points that are obscured by the surface point
in all sampling directions. We exploit this measure as an evaluation
function:

𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐵) =
∑︁

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑠𝐵), 𝑠𝐵 ∈ 𝑆𝐵 (4)

where 𝑆𝐵 indicates the set of all slabs in 𝐵, 𝑠𝐵 is one slab of 𝑆𝐵 ,
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑠𝐵) is the total priority value of all surface points of 𝑠𝐵 .
Note that our evaluation function can be modified easily according
to the demands in the specific manufacturing scenarios.

5.3 Final selection of hybrid manufacturing sequence
The beam-guided strategy terminates until decompose the whole
𝑀 . Once the beam search is terminated, it may result in multi-
ple hybrid manufacturing sequences with the identical account of
blocks. We propose to reuse the last four criteria to evaluate the
produced blocks of each generated manufacturing sequence. Then
select the sequence with the best evaluation value, which is with
the minimized number of "AM-then-SM" steps together with the
best manufacturing efficiency and stability (Figure 14).
We employ the 3+2 machining

strategy during the CNC machining
stage. Specifically, we utilize a graph-
cut-based method described in [Zhao
et al. 2018] to decompose the exter-
nal surface of each block into a series
of height fields. The inset figure illustrates this process. As depicted,
the first block of the kitten model is decomposed into six height-field
patches, each distinguished by a different color. Subsequently, we
perform subtractive machining with six CNC directions, denoted
by small cylinders, on these patches.
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Shape Initial Process Results
Model H 𝑅𝑠 #S #𝑃𝑖 𝑅𝑝 #𝐵𝐶 #𝐼 #𝐵 #𝑂 #C
Coral 61 3.82 11672 279 0.02 608 3 3 3 15
Bunny 105 1.07 5550 48 0.01 492 3 3 3 5
Kitten 85 1.04 10342 4 0.00 341 2 2 2 2
Hand 140 2.29 9209 772 0.08 676 3 3 3 11

CornerHolder 53 3.68 6611 577 0.09 688 3 3 3 5
BottleOpener 53 4.69 6073 444 0.07 1072 4 4 7 5

Julia vase 80 4.56 8847 548 0.06 756 4 4 4 5
TPMS 56 12.6 14907 349 0.02 928 4 4 8 21
Shelf 86 6.68 9370 327 0.03 1560 9 9 10 13

Impeller 21 1.98 9810 0 0 69 1 1 1 1
Four-way pipe 40 1.49 6480 660 0.10 964 4 4 4 4

Exhaust 40 0.79 8059 1427 0.18 1239 6 6 6 13
Table 1. Statistics of the shapes shown in the paper. H is the height (mm)
of the model. 𝑅𝑠 is the surface-area-to-volume ratio. #S is the number of
sample points on the shape surface. #𝑃𝑖 is the number of inaccessible points.
𝑅𝑝 is the ratio of inaccessible points to sample points. #𝐵𝐶 is the total
candidate blocks of the beam search. #𝐼 indicates the number of beam
search iterations. #𝐵 is the number of resulting blocks in the final selected
decomposition. #𝑂 is the sum of additive orientation in the blocks. #C is
the number of connected components.

6 RESULTS AND DISCUSSIONS
This section demonstrates the ASHM sequence planning results of
3D models with varying degrees of geometric complexity and the
physical evaluation results. We also evaluate the performance of
our VASCO algorithm in terms of different parameter settings. Dis-
cussion is proposed on object manufacturability, weight assignment,
and the validation of the algorithm scalability.

6.1 Implementation and Parameters
The implementation of our algorithm was carried out in C++, utiliz-
ing a PC equipped with an Intel Core i7-11700 CPU operating at 2.5
GHz and 16GB of memory. In the subtractive accessibility analysis,
we sampled 200 subtractive directions, while for generating 𝐺𝐴𝑀

𝑖
,

we utilized 100 additive directions. The self-support angle threshold
was set to 50°, and a slice layer thickness of 2.0 mm was employed.
Further details regarding the tool parameters can be found in the
supplementary material. To simulate the VASCO results, we utilized
the [SIEMENS] NX 2206 software, utilizing the "Multi Axis Depo-
sition" and "Manufacturing" modules. For each block, additive and
subtractive paths were generated based on the specified directions,
with collision detection being performed to ensure collision-free
operations. Physical evaluation was conducted by transforming a
desktop 5-axis CNC machine into a desktop ASHM machine. A
video demonstrating the manufacturing process, which consistently
remained collision-free, accompanies this paper.

Initial Process
Model 𝐺𝑆𝑀

1 𝐺𝑆𝑀
𝑖

𝐺𝐴𝑀
𝑖

𝐺𝐴𝑆𝑀
𝑖

𝐸𝑉 𝑇 (𝑚𝑖𝑛)
Coral 38 35 11 9 175 4.5
Bunny 4 6 9 3 57 1.3
Kitten 8 7 6 2 84 1.7
Hand 49 22 17 10 148 4.1

CornerHolder 34 11 12 5 87 2.5
BottleOpener 23 28 33 18 126 3.8
Julia vase 38 36 16 8 103 3.4
TPMS 60 143 71 47 484 13.4
Shelf 34 115 44 27 220 7.3

Impeller 6 1 1 1 29 0.6
Four-way pipe 44 20 11 4 59 2.3

Exhaust 94 84 25 13 132 5.8
Table 2. This table reports the running times (in seconds) for building ini-
tialized subtractive block graph (𝐺𝑆𝑀

1 ), subtractive block graph during the
top-down decomposition (𝐺𝑆𝑀

𝑖
), additive block graph (𝐺𝐴𝑀

𝑖
), the block gen-

eration by merging the unified manufacturing graph (𝐺𝐴𝑆𝑀
𝑖

), and the block
evaluation time (𝐸𝑉 ).𝑇 is the total running time (in minutes).

6.2 Decomposition results
We demonstrate the decomposition results for 11 freeformmodels in
Figure 15, and also list the statistic data in Table 1 and running time
in Table 2, to examine the beam-guided top-down decomposition
algorithm performance.
Generally, the number of blocks correlates with the shape com-

plexity and distribution of inaccessible regions. Shapes with a high
surface-area-to-volume ratio (Shelf ) or numerous inaccessible points
(Julia vase) require longer sequences. Smaller shapes with concavi-
ties face (Bottle Opener) increased inaccessibility due to potential
cutter-workpiece collisions. Three models exhibit multiple additive
manufacturing directions in one block, as seen in the green block
of the Shelf model and the blue and red blocks of the TPMS model
in Figure 15. Our algorithm generates multiple candidate decom-
positions (Figure 14), providing experts with more options. This
flexibility enhances the ASHM process by accommodating diverse
manufacturing requirements.

Performance. Regarding to time consumption, our algorithm takes
6 minutes on average for an arbitrary target shape, shown in Table 2.
The most time-consuming procedure is to build the additive block
graph (𝐺𝐴𝑀

𝑖
), and the block generation process from 𝐺𝐴𝑆𝑀

𝑖
. The

two steps would be applied many times during the beam search.
Compared with the running time of the initialized subtractive ac-
cessibility analysis (𝐺𝑆𝑀

1 ), our algorithm is much more efficient in
building each additive block graph, which takes only 0.02 seconds
on average.

Cutter sizes. For a fixed-size input 3D model, it is easy to under-
stand that the size of the cutter can influence the size and distribution
of inaccessible regions. In a scenario where a model has a larger
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Fig. 15. Results gallery of ASHM sequence planning results generated by our beam-guided top-down decomposition method. The models are arranged in the
order of Bunny, Kitten, Hand, Corner Holder, Bottle Opener, Julia vase, TPMS, Shelf, Impeller, Four-way pipe, Exhaust. The top row illustrates the inaccessible
regions of each model, represented by red dots, which the machining cutter cannot reach. This assumption is made under the condition that the entire model
has been additively manufactured. The subsequent rows visualize the ASHM sequence for each model from left to right, showcasing the staircase formed by
the arrangement of slabs in AM process. The smoothing of high-quality surfaces produced by the subtractive process is also visualized. The arrows indicate
the additive manufacturing (AM) directions for the hybrid-fabricable blocks. Note that we apply a larger inter-layer spacing of AM slabs for each visualization.
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Fig. 16. Illustration of the relationship between the number of blocks gen-
erated by our method (vertical axis) and the cutter length (horizontal axis),
with the Coral model. Two curves are depicted: the green curve represents
the results obtained with a cutter with a radius of 4𝑚𝑚, while the yellow
curve corresponds to a cutter with a radius of 0.5𝑚𝑚. Red points highlight
inaccessible regions of partial models under certain parameter settings.

Fig. 17. With the Julia vase model, we validated our beam-guided top-down
decomposition algorithm’s performance under different combinations of
parameters, the beam width 𝑊𝐵𝑒𝑎𝑚 , and the number of sampling AM
directions 𝑁𝐴𝑀

𝐷𝑖𝑟
. For each bar, we randomly choose the directions and take

the average of 10 tests. The horizontal axis in both the left and right graphs
represents different values of beam width𝑊𝐵𝑒𝑎𝑚 ∈ {1, 8, 16}. The vertical
axis in the left graph represents the number of output blocks, while the
vertical axis in the right graph represents the runtime of our algorithm.
The bar chart uses red, green, and blue colors to indicate three different
parameter values 𝑁𝐴𝑀

𝐷𝑖𝑟
∈ {10, 100, 200}.

area of inaccessible regions, it is expected to have a higher proba-
bility, which corresponds to a longer ASHM sequence length. As
shown in Figure 16, we experimented with validating whether our
algorithm could produce the expected results in this scenario. At
first, we can see that a longer cutter indeed reduced inaccessible
regions’ area of the 𝐶𝑜𝑟𝑎𝑙 model, and a "fatter" cutter (𝑅 = 4𝑚𝑚)
indeed produced larger inaccessible regions compared with a "thin-
ner" cutter (𝑅 = 0.5𝑚𝑚), where a "fatter" cutter is hard to access
those concave areas of the Coral model. Two curves in Figure 16 vi-
sualize our method’s block decomposition results. The experimental
results demonstrate that our algorithm can produce highly expected
block decompositions. Specifically, fewer blocks are generated as
the cutter becomes finer and longer.

50°, #3 40°, #5 30°, #8 20°, #12

Fig. 18. For model Coral, this figure presents the results of our algo-
rithm under the different parameters of maximal self-supporting angle
𝛼𝑚𝑎𝑥 = {50°, 40°, 30°, 20°}. Our algorithm achieves the same number of
blocks regardless of the parameter 𝛼𝑚𝑎𝑥 , three blocks indicated with col-
ors of green, blue, and yellow. However, as the maximal self-supporting
angle 𝛼𝑚𝑎𝑥 decreases, more printing directions are required for additive
manufacturing of the three blocks. The values of 𝛼𝑚𝑎𝑥 and the number of
AM directions are labeled in the figure. The deep red arrows in the graph
indicate the AM directions.

Beam width and sampling AM directions. Our algorithm employs
a beam-guided searching strategy, which offers a key advantage of
striking a balance between algorithm efficiency and performance. In
our algorithm, the parameter beam width𝑊𝐵𝑒𝑎𝑚 and the number of
sampling AM directions 𝑁𝐴𝑀

𝐷𝑖𝑟
control this balance. Generally, larger

values of𝑊𝐵𝑒𝑎𝑚 and 𝑁𝐴𝑀
𝐷𝑖𝑟

result in longer computation time but
yield better results (a shorter ASHM sequence). Figure 17 showcases
the results of applying different parameters𝑊𝐵𝑒𝑎𝑚 and 𝑁𝐴𝑀

𝐷𝑖𝑟
values

to a given Julia vase model, including the number of decomposed
blocks obtained and the corresponding runtime of the algorithm.

Maximal self-supporting angle. In the VASCO formulation, we
assume self-support in additive manufacturing of ASHM, where the
parameter of maximal self-supporting angle 𝛼𝑚𝑎𝑥 is used to iden-
tify the self-support constraint. Generally, a larger self-supporting
slope angle imposes fewer constraints on the algorithm’s freedom.
Figure 18 illustrates the block decomposition results of model Coral
with different parameters of 𝛼𝑚𝑎𝑥 . It is observed that the algorithm
achieves the same number of block decomposition. However, as
the maximal self-supporting angle 𝛼𝑚𝑎𝑥 decreases, more directions
are required for the AM process of the three blocks. The reason
for such results lies in the terminal conditions defined in subsec-
tion 4.4, where we further enlarge the generated block by switching
to other additive directions while the node merging procedure from
the hybrid block graph 𝐺𝐴𝑆𝑀

𝑖
.

6.3 Physical evaluation
Due to the limited availability of equipment for ASHM, particularly
the high costs associated with ASHM equipment for metal materials
and part processing, the research on essential issues from the field of
computer graphics is significantly hindered. Therefore, we choose
to modify a typical desktop 5-axis subtractive machine tool, which
costs around $7K US dollars and less than 5% of the commonly
used metal additive-subtractive equipment. Although this approach
only allows the processing of plastic materials such as PLA, it does
not affect the generality of graphical issues in ASHM, such as seg-
mentation and path planning. We believe that, motivated by our
modification approach, more researchers in the graphics field can
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Fig. 19. Our ASHMmachine was modified from a CNC machine (YORNEW
Benchtop 5 Axis CNC MX220). The accessories of the additive module
are installed above the machine (left). The additive extrusion module is
connected with the machine spindle in parallel (upper right). The lower
right corner demonstrates the additive process and subtractive process.

actively engage in relevant research on additive-subtractive hybrid
manufacturing.
Specifically, we converted a desktop 5-axis subtractive machine

(YORNEWBenchtop 5 Axis CNCMX220) into a simple 5-axis hybrid
machine by adding an external additive extruder parallel to the tool
spindle (see Figure 19 upper right). The 5-axis subtractive machine
is composed of 3 linear movement axis and 2 rotational axes (𝐵,𝐶)
around 𝑌 and 𝑍 axis. The travel distances of the 𝑋 , 𝑌 , and 𝑍 axes of
the five-axis machine are 220𝑚𝑚 × 120𝑚𝑚 × 200𝑚𝑚. The travel
ranges of the B and C axes are +10◦ to −120◦ and 360◦, respectively.
The repeatability accuracy of linear motion is 0.01 mm, and the
rotation axis has a resolution of 12′′.

The key challenge is to enable the 5-axis subtractive machine to
recognize and control the movements of the extruder, determine its
position, and avoid collisions. We modify the circuit hardware (see
Figure 19 left) and build a digital counterpart of the extruder in the
simulation software. The external additive extruder is instructed
by the controller of the 5-axis subtractive machine through G-code
command. We use the user-defined-command M70/M71 to control
the open and close of the extruder.
During the ASHM process, to maximize the usable workspace

and avoid collisions, we manually remove the cutting tools used
for subtractive operations during the additive phase. Since the tools
have fixed positions for installation, the time required for removal
and reinstallation is short, and no additional positioning calibration
is needed. However, the CNC system employed in this approach
only supports open/close operations for controlling the extruder.
Consequently, we cannot perform retraction by reversing the ex-
truder, resulting in significant stringing during idle travel and poor
surface quality in the additive process. Nevertheless, these issues
do not affect the final machining results, as the defects can be easily
removed during subsequent subtractive steps. This aspect highlights
the value of additive-subtractive hybrid manufacturing.

Fig. 20. The Impeller (1 block), Kitten (2 blocks), Coral (3 blocks) and Four-
way pipe (4 blocks) were fabricated using our ASHM machine. Each model
demonstrates the fabrication result (left) of the first block with a purely
additive process and the result (right) after the whole ASHM process. Our
approach owns higher surface quality compared to pure additive manu-
facturing. The Four-way pipe model improve the quality of both the outer
surface and the inner channel. However, some defects still exist (blue, green,
and red circles, which are mainly caused by our imperfect equipment and
subtractive path planning.)

For the fabrication, we utilize Unigraphics-NX 2206 [SIEMENS]
to produce both additive and subtractive tool paths. For AM, we
employ the contour-parallel path, setting the in-fill rate to 30%,
the tool path width to 0.5𝑚𝑚, and the layer thickness to 0.2𝑚𝑚.
In the subtractive manufacturing stage, 3 + 2 machining strategy
is adopted: the outer surface of each block is first segmented by
[Herholz et al. 2015]’s methods to generate a set of machinable
height-field patches; then generate an 𝑎𝑟𝑒𝑎𝑚𝑖𝑙𝑙𝑖𝑛𝑔 tool path for each
height-field patch. We set the non-steep cutting path to follow the
perimeter and the steep cutting path to one-way deep machining.
The speed of main-shaft is set to 1500 rpm.

We show some fabrication results in Figure 20. The results demon-
strate that our VASCO method can successfully achieve hybrid man-
ufacturing of complex 3D objects6. The latter three models cannot
be realized through a single "AM-then-SM" ASHM process. In the
meantime, compared to pure additive manufacturing, our approach
yields higher dimensional accuracy and better surface quality, effec-
tively addressing the issues such as staircase defects.
In Figure 20, the seamline artifacts on the model surface appear

on the boundaries. 1) Between blocks: the green circle highlights a
small and thin area where multi-layers of printing path are highly
concentrated in, causing the material to collapse; the red circle
shows a seam line that is due to a slight misalignment during the
reinstallation of the rotary-axis part in the modification process. 2)
Within a block: the height-field patches are fabricated in different
machining cutter directions (blue circle), which is mainly raised by
the imperfect equipment setup and the generated tool path without
considering the positioning compensation that may be necessary.
6Please refer to our supplementary video for the in-action demonstration of the actual
manufacturing process.
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Note that due to the constraints imposed by our current equip-
ment’s manufacturing space (about 60mm × 60mm × 90mm), we are
unable to fabricate large-scale models, such as the Exhaust model
(76mm length).

6.4 Discussion and Limitations
The VASCO problem is formulated from the geometric point of view.
In the practical manufacturing process, more physical considera-
tions must be carefully treated in the post-processing.

Object Manufacturability. The inset fig-
ure shows a failure case of the fertility
model. Our algorithm failed to find a fea-
sible solution with the default parameters.
The reason is that the self-support and ac-
cessibility constraints cannot be simulta-
neously satisfied within the searched sam-
pled directions. In the fertility model, if we consider the base pink
area as the shape𝑀 that is realized within a single iteration of the
beam-guided top-down process, then for every sampling additive
direction used to realize𝑀 , it is impossible to decompose any block
from the resulting graphs𝐺𝐴𝑆𝑀

𝑖
. In other words, all the leaf nodes in

these 𝐺𝐴𝑆𝑀
𝑖

graphs are not fabricable. As a consequence, the beam
search gets stalled. However, no solution found does not necessarily
imply that this model is ASHM infeasible, as our VASCO algorithm
cannot enumerate all printing directions, and the exploration of the
search space is always limited by the search cost.

Weight assignment. Another issue is the weight assignment in
the evaluation of the block candidate. In most cases, the default
settings (𝑤1 = 𝑤2 = 0.4,𝑤𝑘 = 0.05, 𝑘 ∈ [3, 4, 5, 6]) produce nice
results, but it is not guaranteed that this set of weights works uni-
versally regarding the target shapes and fabrication parameters. We
believe involving learning-based techniques [Gao et al. 2021; Wu
et al. 2020b] would help with the scoring strategy.

Object orientation. Another limitation of our current solution
is that it does not take into consideration the object’s inherent
orientation, which is assumed to be provided by the user. We believe
that different inherent orientations can result in distinct inaccessible
regions for the ASHM tools. Therefore, incorporating orientation
information may potentially lead to further reductions in the ASHM
sequence length. We intend to explore this aspect in future research,
and we believe that a learning-based approach holds promise to
address this issue.

Algorithm scalability . To validate the algorithm’s scalability, we
conducted tests using lattice models of different scales in Figure 21.
The bottleneck in our algorithm is building the subtractive block
graph. Both the number of inaccessible points and surface sampling
points for building the subtractive block graph 𝐺𝑆𝑀

1 directly affect
the number of edges of 𝐺𝑆𝑀

1 and thus determine the scale of the
graph. The three lattice models separately have 10844, 36497, and
92977 surface sampling points. Since the 30𝑚𝑚3 model owns a small
size and simple geometry structure, almost all of these sampling
points are accessible to the machining cutter. Therefore, it only takes

Fig. 21. An example of decomposing a lattice structure for ASHM sequence
planning generated by our algorithm. The lattice models are constructed by
Boolean operations on cube structures of different edge lengths. Each cube
frame in the lattice mode has a consistent thickness 1.2𝑚𝑚, and the distance
between adjacent cube frames is also consistent, as 10𝑚𝑚. From left to right,
the latticemodels have 3×3, 5×5, and 10×10 lattice cells, with corresponding
dimensions of 30×30×30𝑚𝑚3 , 50×50×50𝑚𝑚3, and 100×100×100𝑚𝑚3.
Our algorithm successfully performs block decomposition for the first two
models, resulting in 2 and 6 blocks. However, due to memory explosion, it
cannot achieve segmentation for the last model.

92MB of memory and 9 seconds to build𝐺𝑆𝑀
1 . In contrast, the other

two models own much more complex structures and large sizes,
causing many inaccessible points. The 50𝑚𝑚3 model needs 6.2GB
memory and 18.6 minutes to build the graph. 50𝑚𝑚3 model is a
failure case; it exceeds the memory limit of the computer (16GB).
Our algorithm can solve the most commonly used models, but for
this extremely complex model, more intelligent algorithms must
be designed to solve the memory explosion problem. A possible
solution is to dynamically generate the subtractive block graph,
while the difficulty is how to properly pick the local edges, which
we think is an interesting future work.

7 CONCLUSION AND FUTURE WORK
This paper introduces a novel computational framework aimed at
addressing the sequence planning problem in additive/subtractive
hybrid manufacturing (ASHM), which involves interleaved additive
and subtractive processing. We propose a formulation called the
"Volume-And-Surface-CO-decomposition, VASCO" problem, which
aims to minimize the number of transitions between additive and
subtractive processes while considering dynamic accessibility and
manufacturing dependency constraints. Central to our approach
is the concept of block, which combines printing volume and fin-
ishing surface properties, along with dynamic directed graphs that
integrate the slabs of the block and the aforementioned constraints.
To solve the VASCO problem, we present a beam-guided top-down
block decomposition algorithm. Notably, our method surpasses pre-
vious approaches by being applicable to general sequence planning
scenarios, without imposing restrictions on target shapes, hybrid
sequence cycles, or manufacturing degrees of freedom.
Other manufacturing options can be taken into account to ex-

tend the VASCO formulation, 1) incorporating over/under-cut or
over/under-fill manufacturing strategies [Harabin and Behandish
2022]; 2) considering simultaneously additive and subtractive man-
ufacturing, where the print head and CNC cutter are working at
the same time; 3) taking adaptive direction sampling method to
build the subtractive and additive block graphs as some directions
play more important roles; 4) considering volumetric subtractive
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manufacturing to allow carving external volume while repairing
deformed parts. These options may be included in our proposed al-
gorithm by extension the formulation of block, the unified direction
graph to encode more manufacturing constraints and include more
criteria in our evaluation functions.

Hybrid manufacturing-oriented design can be further explored by
combining our sequence planning method with space-time topology
optimization [Wang et al. 2020]. Moreover, the feasibility study of an
arbitrary given shape for ASHM is still an open problem. A reliable
method that determines the feasibility of the target shape would
greatly benefit shape optimization and practical CAM. Our VASCO
algorithm produces an optimized solution for ASHM, and returns if
no feasible solution is found. But it is just a necessary condition for
the feasibility study. We would like to further dig into this problem.
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