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Fig. 1. We propose an octree-based neural network for cutter accessibility and severe occlusion detection on arbitrary meshes. Compared to traditional

geometric methods, our network significantly reduces computation time, enabling real-time prediction during shape editing. Across various CAD and freeform

model datasets with different mesh resolutions, the accuracy for inaccessible regions and occlusion regions reach 94.7% and 88.7%, respectively. The cutter

sizes for each shape in the figure are randomly generated. We display the cutter shapes used for two shapes. On the left, the red and green areas represent

inaccessible and severely occlusion regions predicted by the network. Dark red (green) and light red (green) areas indicate under- and over-predictions,

respectively, compared to the traditional geometric method. On the right, the results of applying our network for volume accessibility analysis are shown.

Manufacturability is vital for product design and production, with accessibil-

ity being a key element, especially in subtractive manufacturing. Traditional

methods for geometric accessibility analysis are time-consuming and strug-

gle with scalability, while existing deep learning approaches in manufactura-

bility analysis often neglect geometric challenges in accessibility and are

limited to specific model types. In this paper, we introduce DeepMill, the first

neural framework designed to accurately and efficiently predict inaccessible

and occlusion regions under varying machining tool parameters, applica-

ble to both CAD and freeform models. To address the challenges posed by

cutter collisions and the lack of extensive training datasets, we construct a

cutter-aware dual-head octree-based convolutional neural network (O-CNN)

and generate an inaccessible and occlusion regions analysis dataset with a

variety of cutter sizes for network training. Experiments demonstrate that

DeepMill achieves 94.7% accuracy in predicting inaccessible regions and

88.7% accuracy in identifying occlusion regions, with an average processing
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time of 0.04 seconds for finely-tessellated geometries. Based on the outcomes,

DeepMill implicitly captures both local and global geometric features, as

well as the complex interactions between cutters and intricate 3D models.

Code is publicly available at https://github.com/fanchao98/DeepMill .
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1 INTRODUCTION

Manufacturability is a fundamental concept in product design and

production [Gupta et al. 1997; Shukor and Axinte 2009], referring to

the ease and efficiency with which a design can be transformed into

a physical product, while accounting for factors such as material

constraints, cutter capabilities, and production costs [Hoefer et al.

2017; Joshi and Chang 1988; Li and Frank 2006]. Ensuring manufac-

turability early in the design process is critical to avoiding costly

revisions, delays, and inefficiencies, thereby optimizing production

timelines and minimizing resource waste.

Accessibility is a key aspect of manufacturability [Elber 1994;

Spyridi and Requicha 1990]. In subtractive manufacturing, accessi-

bility pertains to whether all surfaces and features of a part can be

reached by machining tools during production [Zhang et al. 2020].

Accessibility issues arise when certain features are difficult to access,
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such as deep holes, internal cavities, or overhanging geometries. Ad-

dressing these challenges through accessibility analysis is essential

for identifying potential machining difficulties early, enabling de-

signers to adjust part geometry or select appropriate cutters to opti-

mize the manufacturing process. Beyond subtractive manufacturing,

accessibility analysis also plays a critical role in decisions such as

setup planning [Zhong et al. 2023], cutter selection [Athawale and

Chakraborty 2010], cutter orientation adjustment [Mahdavi-Amiri

et al. 2020], and tool path planning [Balasubramaniam et al. 2003],

contributing to overall production efficiency and cost-effectiveness.

Traditional methods for geometric accessibility analysis, which

emerged in the 1990s, primarily rely on geometric and compu-

tational techniques to evaluate cutter accessibility in multi-axis

CNC machining. These methods, while foundational, are often time-

consuming, especially for geometrically complex parts, with analysis

of intricate designs taking hours—unacceptable in fast-paced design

environments that require rapid iteration [Dai et al. 2018]. Although

early approaches advanced from basic visibility analysis to more

precise accessibility evaluations, they struggle with scalability and

high computational overhead when applied to high-resolution 3D

models. These limitations highlight the need for faster, more scal-

able methods capable of handling complex geometries and diverse

cutter parameters.

In recent years, the advent of deep learning techniques has opened

new possibilities for improving computational efficiency in manu-

facturability analysis. Several studies have explored the use of deep

learning models to predict non-manufacturable regions [Chen et al.

2020; Ghadai et al. 2018; Kerbrat et al. 2011], enhancing performance

by reducing processing time. However, most of these efforts focus

primarily on process-related issues, such as process planning and

collision detection [Chen et al. 2020], while neglecting the crucial

geometric challenges inherent in accessibility analysis. Moreover,

these methods often rely on feature-based CAD models [Balu et al.

2020; Yan and Melkote 2023], which limits their applicability to

freeform or highly complex product designs.

This paper presents DeepMill, the first neural framework, to the

best of our knowledge, specifically designed for predicting non-

manufacturable regions in arbitrary models, including freeform

shapes, with high accuracy and efficiency. Unlike previous methods,

DeepMill focuses specifically on cutter accessibility, identifying

regions where cutter collisions occur due to geometric constraints

such as occlusion. We propose to utilize a neural network capable

of real-time predictions for both non-manufacturable regions and

the occlusion regions causing these issues, providing designers

with actionable insights to quickly iterate and refine their designs.

DeepMill demonstrates exceptional generalization across various

cutter sizes and complex geometries, making it suitable for a wide

range of design contexts.

One of the key challenges in accessibility analysis is the complex-

ity of cutter collisions, which can be both local and global in nature.

Factors such as cutter rotation and size affect accessibility, requiring

methods that efficiently learn and represent these underlying geo-

metric features. Moreover, the scarcity of extensive training datasets

for these specific tasks has hindered the creation of robust models.

To overcome these challenges, we propose utilizing octree-based

convolutional neural network (O-CNN) to efficiently capture both

local and global geometric features, while embedding cutter modules

to capture intricate interactions between cutters and complex 3D

surfaces. This approach enables our network to handle both CAD

and freeform models, providing a scalable and flexible solution to

the manufacturability analysis problem. Additionally, we created the

first inaccessible and occlusion regions analysis dataset with diverse

cutter parameters for training DeepMill and generated multiple test

set categories, addressing the challenges of data scarcity.

In summary, DeepMill offers a significant advancement in both

computational efficiency and accuracy. Experiments indicate Deep-

Mill achieves 94.7% and 88.7% accuracy on average in identifying

inaccessible and occlusion regions, with an average processing time

of only 0.04 seconds for finely-tessellated geometries. Our model is

adaptable to a wide range of cutter sizes, ensuring its applicability

across diverse design contexts. Additionally, we introduce a new

dataset to support further research in this area and facilitate the

development of more robust manufacturability analysis cutters.

2 RELATED WORK

The rapid advancements in artificial intelligence (AI) have signif-

icantly propelled solutions in digital geometric design and manu-

facturing [Abdelaal 2024]. AI applications in additive manufactur-

ing [Wang et al. 2020b; Zhang et al. 2024] and subtractive manufac-

turing [Manikanta et al. 2024; Soori et al. 2023] have been exten-

sively reviewed. Cutting-edge research similarly advances computer

graphics, encompassing assembly planning [Jones et al. 2021], LLM-

centric design and manufacturing [Makatura et al. 2024a,b], 3D

printing path optimization [Huang et al. 2024a; Liu et al. 2024], and

feedback-based 3D printing control [Piovarci et al. 2022]. These

advancements underscore a significant trend towards AI-based au-

tomation and optimization in design and manufacturing processes.

This paper primarily examines the manufacturability analysis using

a learning method, specifically focusing on the accessibility analysis

for subtractive manufacturing [Gupta et al. 1997; Hoefer et al. 2017],

which is also the main content of this section.

Traditional Manufacturability Analysis. Manufacturability of sub-

tractive manufacturing is defined as four characteristics: visibility,

reachability, accessibility, and setup complexity [Gupta et al. 1997;

Hoefer et al. 2017]. Traditional techniques of manufacturability anal-

ysis primarily relies on two approaches: feature-based and feature-

less methods [Zhang et al. 2020]. Feature-based methods extract ma-

chining features as a prerequisite, using techniques like graph-based

analysis [Joshi and Chang 1988], volumetric decomposition [Kailash

et al. 2001; Kim 1990], and hint-based approaches [Regli III 1995].

Feature-less methods, on the other hand, analyze surface repre-

sentations to assess manufacturability, employing techniques such

as slicing for machinable range mapping [Li and Frank 2006] and

octree decomposition [Kerbrat et al. 2011].

Aligned with these conventional studies, where accessibility is the

main evaluation metric for both feature-rich and feature-agnostic

methods [Zhang et al. 2020], this paper primarily focuses on assess-

ing accessibility. Unlike traditional approaches, we investigate the

use of neural networks for accessibility analysis.
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Learning based Manufacturability Analysis. Recent advancements

leverage deep learning [Xu et al. 2023], such as autoencoder-based

generative models for feature matching [Yan and Melkote 2023],

3D-CNNs with orthogonal distance fields (ODF) for manufactura-

bility prediction [Balu et al. 2020], and enhanced B-rep structures

with surface normal data for feature recognition [Ghadai et al. 2018].

Hierarchical graph neural networks have also been applied to an-

alyze B-rep topology and UV network geometry for multi-level

learning [Huang et al. 2024b]. A key limitation of these studies is

the difficulty of applying learning methods to complex tasks like

predicting cutter accessibility for freeform shapes.

A recent study explored only one directional accessibility anal-

ysis using a neural network [Harabin et al. 2023], and it requires

retraining for each shape and cutter, struggling particularly with

the high computational cost on finely-tessellated meshes. In con-

trast, DeepMill does not require retraining for the input shapes,

enabling real-time prediction of inaccessible and occlusion areas in

all directions while supporting general cutters.

Geometric Accessibility Analysis. Determining accessibility inmulti-

axis CNCmachining remains a significant challenge, with numerous

methods proposed since the 1990s. Early research focused on geo-

metric and computational approaches, with Spyridi introducing

the concepts of global and local accessibility for CMM [Spyridi

and Requicha 1990], Saito proposing a graphics-inspired G-buffer

method for tool accessibility analysis [Saito and Takahashi 1991],

and Woo developing the spherical visibility map, which laid the

foundation for 3D surface visibility analysis [Elber 1994; Woo 1994].

Other methods explored NURBS surfaces for interference calcula-

tions [Lee and Chang 1995], configuration space mapping for cutter

range feasibility [Choi et al. 1997], effective cutter radius evalua-

tions for end mills [Vafaeesefa and ElMaraghy 1998], and curvature-

based differential inequality that verifies tool accessibility [Glaeser

et al. 1999]. To simplify or accelerate calculations, various methods

have been widely adopted, including sampling-based cutter direc-

tion analysis [Balasubramaniam et al. 2003; Dhaliwal et al. 2003;

Mahdavi-Amiri et al. 2020; Zhao et al. 2018], cutter shape simpli-

fication [Glaeser et al. 1999], implicit shape representation using

composite adaptively sampled distance fields [Sullivan et al. 2012],

plane projections for blisk machining [Chen et al. 2015], boundary-

based range construction [Liang et al. 2016], and bounding volume

hierarchy construction for meshes [Bartoň et al. 2021]. More ad-

vanced approaches include Gaussian spherical mapping [Liu et al.

2020], ray-tracing-based metrics for assessing five-axis milling man-

ufacturability [Chen and Frank 2021], and fast collision-free point

removal based on footpoint computation [Chichell et al. 2024].

These approaches reflect the progression from basic visibility

analysis to more efficient and precise accessibility evaluations in

complex machining scenarios. However, when applied to intricate

or high-resolution 3D models, they often face scalability challenges

and significant computational overhead due to the time-intensive

nature of strictly geometric methods [Dai et al. 2018]. Therefore,

developing fast and scalable methods capable of handling complex

geometries and diverse cutter parameters is highly meaningful.

Spatial Analysis Learning. Early works extended deep learning

methods to 3D voxels [Maturana and Scherer 2015a; Wu et al. 2015]

for spatial analysis. However, voxel-based approaches are computa-

tionally expensive and memory-intensive, making them unsuitable

for high-resolution 3D data. To address these limitations, sparse

voxel-based CNNs leverage octrees [Wang et al. 2017a] or hash ta-

bles [Choy et al. 2019a; Graham et al. 2018] to confine computation

to sparsely occupied voxels, significantly improving efficiency. Point-

based neural networks [Li et al. 2018; Qi et al. 2017a,b] eliminate the

need for voxelization by directly processing point clouds, offering

an alternative solution. Recently, transformers have also been ap-

plied to 3D data, demonstrating promising results [Guo et al. 2021;

Wang 2023; Zhao et al. 2021]. In this work, we adopt O-CNN [Wang

et al. 2017a] for accessibility analysis due to its efficiency and strong

performance across a range of 3D tasks.

3 METHODOLOGY

This section outlines the problem and goal of the network, followed

by an introduction to our octree-based network, DeepMill, designed

for predicting inaccessible and occlusion regions on the surface of

the input mesh𝑀 .

3.1 Problem formulation

The detection of inaccessibility and occlusion regions, which seg-

ments these areas from the surface of 𝑀 , is formulated as a 3D

geometric segmentation problem. To facilitate the computation, we

use points to represent its local region. The goal of inaccessibility

detection is to identify inaccessible points on𝑀 (labeled as 𝑙𝐼 ) that
are inaccessible to the cutter, meaning the cutter cannot reach them

from any direction, even from an infinite distance, without causing

a collision (Figure 3c). While occlusion detection aims to locate

points causing the most severe occlusion for the inaccessible points.

In this paper, we classify the top 10% of points with the highest

occlusion severity as "occlusion points" (labeled as 𝑙𝑂 ). Due to the

severe imbalance in data distribution, we use the F1-score to eval-

uate the occlusion points. Unlike standard visibility problems, the

shape and size of the cutter C directly influence the segmentation

results. Consequently, this task is formulated as a dual-task binary

segmentation problem with a cutter-aware objective, expressed as:

𝑀𝑎𝑥 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑙𝐼 ) + 𝐹1(𝑙𝑂 ) | C). (1)

3.2 DeepMill

DeepMill’s main components include the encoder and the decoder,

which are well-suited for segmentation task. Additional cutter mod-

ules and prediction head are added to further adapt to our problem.

Figure 2 shows the network architecture of DeepMill.

O-CNN with U-Net architecture. Unlike more complex network ar-

chitectures, such as the Hierarchical Graph Neural Network [Huang

et al. 2024b], the O-CNN-based U-Net architecture uses a concise rep-

resentation—point clouds and their normals—as input. The output

consists of two predicted labels for each point. The U-Net archi-

tecture [Ronneberger et al. 2015] is composed of an encoder and a

decoder, both of which are stacked with multiple Octree-based resid-

ual blocks [Wang et al. 2017b], with skip connections between the

encoder and decoder. The encoder progressively extracts multi-scale

features from the input 3D data, while the decoder gradually restores
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Fig. 2. DeepMill’s network architecture. The number represents the channel

count. The input mesh is converted into a point cloud with normals, with

each point corresponding to a Voronoi cell’s site. Features are progressively

extracted through the encoder, and the decoder, embedded with a cutter

module (CM), restores spatial resolution. Both encoder and decoder are

stacked with several Octree-based residual blocks. Finally, each site is sub-

jected to dual-task binary segmentation through two header layers. Red

and green represent the inaccessible and occlusion regions, respectively.

spatial resolution and reconstructs accurate predictions through the

use of skip connections. DeepMill adopts this architecture, and the

benefits of this approach will be discussed in subsection 5.4.

Cutter embeding. In finishing machining of CNC, a ball-end cutter

is commonly employed to finish the surface, modeled as a hemi-

sphere combined with two differently sized cylinders. Figure 3(a)

illustrates the cross-section of the cutter, which can be characterized

using four parameters: two radii (𝐶𝑅 and 𝐹𝑅) and two heights (𝐶𝐻
and 𝐹𝐻 ). To enable the network to learn the impact of the cutter

on inaccessibility and occlusion points, we embed cutter modules

into the network. Compared to the encoder, the decoder is closer

to the network’s final decision-making region, and concatenating

the cutter features at this stage minimizes interference with the

network’s early learning of geometric shapes. Furthermore, con-

sidering that the cutter causes collisions in both local regions and

distant global regions (collide with the shaft space above the cutter)

of𝑀 , we embed cutter modules at every layer of the decoder to help

the network better learn the collision patterns between the cutter

and𝑀 at different scales.

In detail, we encode the four shape parameters of the cutter

into a vector V = [𝑣1, 𝑣2, 𝑣3, 𝑣4]
𝑇 and pass it through four fully

connected cutter modules. As shown on the right side of Figure 2,

each cutter module consists of two "Linear-ReLU-BN-Dropout" sub-

blocks, where the 4-dimensional vector V is transformed into a 256-

dimensional cutter feature. These features are then concatenated

into each layer of the decoder in the U-Net architecture:

𝑓 ′𝑖 = 𝑓𝑖 ⊕ 𝑓 𝑐𝑖 , 𝑖 = 1, 2, 3, 4 (2)

where 𝑓𝑖 indicates the output feature of the 𝑖-th layers in the decoder
and 𝑓 𝑐𝑖 is the output feature of the 𝑖-th cutter module.

Dual-head segmentation. To predict inaccessible points and oc-

clusion points separately, we use two fully connected header layers

to predict these two types of labels. Since occlusion points are cal-

culated based on inaccessible points, and both labels are computed

using the same geometric algorithm during collision detection, there

is a strong geometric correlation between the two labels. Therefore,

before passing through the header layers, their features are fully

shared. The predicted results 𝑦𝑖𝑗 for 𝑖-th point are denoted as:

𝑦𝑖𝑗 = header𝑗 (𝑓
′
4 ), 𝑗 = 1, 2 (3)

Architecture details. As shown on the left side of Figure 2, each

octree-based residual block consists of two "Convolution + BN +

ReLU" sub-blocks, connected by residual connections [He et al. 2016].

Batch normalization (BN) is applied to reduce internal covariate

shift [Ioffe 2015], while the ReLU activation function (𝑓 : 𝑥 ∈ R ↦−→

𝑚𝑎𝑥 (0, 𝑥)) is used to activate the output.

In the encoder, the input point cloud undergoes multiple octree-

based 3D convolution operations through several octree-based resid-

ual blocks, generating feature maps at different levels to capture

multi-scale geometric features for hierarchical representation. Un-

like traditional 3D-CNN convolutions [Maturana and Scherer 2015b],

the octree structure marks non-empty nodes at the current depth,

representing regions containing point clouds, and applies convo-

lutions only to these nodes. The depth of the octree gradually de-

creases, and high-resolution child node features are aggregated into

their corresponding parent nodes.

In the decoder, the global feature map is progressively processed

through deconvolution for feature upsampling and spatial detail

recovery, with cutter feature fusion enhancing the modeling of

inaccessibility and occlusion effects. As the depth of octree increases,

features are progressively passed down to the high-resolution child

nodes. Output-guided skip connections [Wang et al. 2020a] are used

to transfer features from the encoder to the decoder, excluding

sparse regions. If the octree node corresponding to a feature output

from a block is empty, the skip connection is not applied.

Loss function. During network optimization, we use cross-entropy

loss function to compute the loss for inaccessible and occlusion

points separately, denoted as L𝐼 and L𝑂 . The total loss function is

defined as:

L = L𝐼 (𝑦1, 𝑦1) + L𝑂 (𝑦2, 𝑦2) (4)

where 𝑦1 and 𝑦2 denote the ground truth labels calculated using the

geometric method mentioned in section 4.

4 GEOMETRIC METHOD FOR DATASET GENERATION

In this section, we introduce a rapid geometric approach to generate

datasets with labels for inaccessible and occlusion regions.

4.1 Voronoi-based accessibility analysis

We use the subtractive collision detection method from [Zhong

et al. 2023] to gather accessibility training data, as it’s efficient. We

introduced a slight modification to their method by incorporating a
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(a) (b) (c) (d)

Fig. 3. Illustration of inaccessible point detection. Orange represents the

cutter, and the gray points represent sampled Voronoi sites. (a) A ball-end

cutter can be simplified using four parameters. Note that above cutter is

a non-accessible shaft space, and 𝑃𝐷 is set to infinity. (b) For collision

detection with red points, the mesh is first rotated, and points are quickly

filtered by checking whether they lie within the detection box (red) of radius

FR+𝜎 , which eliminates most points far from the cutter. 𝜎 is set to 5 in our

experiments. (c) A finer collision check is performed for the points inside the

box. (d) To prevent the cutter from penetrating the mesh without detection,

the spacing between adjacent sites must be smaller than the cutter’s ball-

end radius (𝐶𝑅).

detection box for pre-detection, enabling faster calculation. Details

of the method are outlined below.

Voronoi-based sampling. The inset figure demonstrates the use of

Voronoi relaxation [Meng et al.

2023] for uniform sampling on the

surface of𝑀 , with each Voronoi cell

represented by its site 𝑠𝑖 ∈ 𝑆 , where
𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}. The surface of
𝑀 can be simplified as 𝑀 = ∪𝑛𝑖=1𝑠𝑖 .
We uniformly sample cutter direc-

tions 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚} using the Fibonacci Sphere sampling

method [Vorobiev 2002] on the upper Gaussian hemisphere. To en-

sure successful manufacturing, it is essential to guarantee the cutter

C does not collide with𝑀 in any direction:

∀𝑠𝑖 ∈ 𝑆,∀𝑑𝑘 ∈ 𝐷, 𝑠𝑖 ∩ C|𝑑𝑘 = ∅ (5)

where C|𝑑𝑘 represents the cutter in direction 𝑑𝑘 .

Inaccessible points. For each 𝑠𝑖 ∈ 𝑆 , collision detection is per-

formed with other sites, ∀𝑠 𝑗 ∈ 𝑆 ( 𝑗 ≠ 𝑖), using the method from

[Zhong et al. 2023]. We first rotate 𝑀 contrarily along direction

𝑑𝑘 ∈ 𝐷 . To accelerate computation, a cylinder with a radius of

𝐹𝑅 + 𝜎 is added as a detecting box before collision detection, allow-

ing only points within the cylinder to undergo finer detection, as

shown in Figure 3(b). Next, as illustrated in Figure 3(c), each 𝑠 𝑗 is
rapidly evaluated for collision by calculating its horizontal distance

from the center of C. If the Z-coordinate of 𝑠 𝑗 exceeds𝐶𝑅+𝐶𝐻 +𝐹𝐻 ,

it is immediately classified as colliding with the infinitely large shaft

space (called global collision). After the traversal, if 𝑠𝑖 collides with
at least one 𝑠 𝑗 in all cutter directions, it is classified as an inaccessible
point:

𝑠𝑖 ← 𝑙𝐼 ⇐⇒ ∀𝑑𝑘 ∈ 𝐷, |𝑆 ∩ C(𝑑𝑘 ) | > 0 (6)

Compared to the triangle-facet-based approach [Dhaliwal et al.

2003], which involves collision detection between the cutter’s cylin-

drical surface and the triangular mesh, the proposed method is based

(a) (b) (c) (d)

Fig. 4. Illustration of occlusion point calculation. (a)∼(c) Perform collision

detection for three inaccessible points, recording the points that collide

with the cutter in each cutter direction and counting the total number of

collisions for each point. (d) The top 10% of points with the highest total

collision counts are labeled as occlusion points (𝑙𝑂 ).

on discrete sampling points (sites of Voronoi cells), significantly im-

proving computational efficiency. Even so, this method still has a

worst-case complexity of 𝑂 (𝑚𝑛2). Besides, it is crucial to ensure

that the shortest edge length of the smallest Voronoi cell is greater

than 2 ∗ 𝐶𝑅 to prevent the cutter from passing through the cell

without detection, as illustrated in Figure 3(d).

4.2 Occlusion analysis

To further assist designers in modifying the "culprit" causing inac-

cessible points, we compute the "occlusion factor" 𝛽𝑖 for each 𝑠𝑖 ∈ 𝑆
to quantify the severity of its occlusion for the inaccessible points:

𝛽𝑖 =
∑
𝑠 𝑗 ∈𝑆

∑
𝑑𝑘 ∈𝐷

({
1, if 𝑠 𝑗 is inaccessible and 𝑠𝑖 occludes 𝑠 𝑗 in 𝑑𝑘
0, otherwise

)

(7)

The top 10% of 𝑠𝑖 with the highest 𝛽𝑖 values are defined as "occlusion
points" (𝑠𝑖 ← 𝑙𝑂 ). As shown in Figure 4, the points in the upper

region of the 2D shape are marked as "occlusion points."

5 RESULTS AND DISCUSSIONS

5.1 Data processing and datasets

Data processing and cleaning. We performed the accessibility and

occlusion analysis described in section 4 to construct the training

and test sets, uniformly sampled 150 cutter directions on the upper

hemisphere. We selected various CAD shapes from the ABC dataset

[Koch et al. 2019] and freeform shapes from Thingi10K [Zhou and

Jacobson 2016]. After cleaning non-manifold, non-watertight, and

multi-component assemblies, we retained high-quality shapes. To

avoid invalid data from shapes significantly smaller than the cutter,

we extracted each shape’s bounding box, ensuring its minimum

edge length was at least 80 mm. For each shape, the coordinates

of Voronoi cell sites, normals, and corresponding inaccessible and

occlusion labels were recorded in the training and test sets.

Datasets. In the training set, we randomly generated the four

cutter parameters for over 5K CAD shapes within specified ranges:

𝐶𝑅 ∈ [1, 2], 𝐹𝑅 ∈ [5, 100], 𝐶𝐻 ∈ [0.1, 10.1], and 𝐹𝐻 ∈ [0.1, 10.1].
These parameter ranges make the ratio of inaccessible to acces-

sible points in the training set close. Each shape had an average

of approximately 7K mesh vertices. For the test sets, we selected

1K CAD shapes distinct from the training set and created two sets
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Fig. 5. (a) Training curves for four key metrics, including the accuracy

and F1-score of inaccessible and occlusion points. (b) The proportion of

inaccessible and accessible points in the datasets.

through remeshing, containing 7K and 15K mesh vertices, respec-

tively. Similarly, we generated two test sets for freeform shapes.

To further validate DeepMill’s generalization ability, we curated a

finely-tessellated dataset of 500 shapes with over 100K vertices from

the ABC dataset. Additionally, we varied cutter size parameters and

generated multiple test sets based on CAD shapes to demonstrate

DeepMill’s adaptability to different cutter sizes.

5.2 Implementation

All experiments were conducted on a desktop computer equipped

with an Intel Core i7-11700F CPU running at 16 GB of memory, and

an RTX 3090 GPU with 24 GB of memory. The octree depth was

set to 5, with encoder channels configured as [32, 32, 64, 128, 256]

and decoder channels as [256, 256, 128, 96, 96]. The cutter module

channels were set to [256, 256, 256, 256]. We used the stochastic

gradient descent (SGD) optimizer for training, starting with an

initial learning rate of 1.0, which was adjusted using the Cosine

Annealing method. The network was trained for 1500 epochs with

a batch size of 128 for both training and testing. All input points

were normalized to the unit cube [−1, 1]3, and data augmentation

methods from [Choy et al. 2019b], including random mirroring and

elastic deformations, were applied.

5.3 Evaluation

Efficiency and Generalization. DeepMill was trained on a dataset

of over 5K CAD shapes. The entire training process was conducted

on an GeForce RTX 3090 GPU and took a total of 89 hours. Figure 5

shows the convergence curves of accuracy and F1-score during

training process (a), as well as the ratio of accessible to inaccessible

points in the datasets (b). We evaluated DeepMill’s efficiency on

datasets containing diverse shapes, as shown in Table 1. We map the

Voronoi sites onto the triangles for better visualization. Figure 1 and

Figure 6 illustrate plenty of examples of inaccessible and occlusion

regions predicted by DeepMill with various cutter sizes.

In general, DeepMill maintains high prediction accuracy, with

most errors occurring near the boundaries of inaccessible and occlu-

sion regions, which minimally affects the overall distribution. Addi-

tionally, as the mesh resolution increases (e.g., 7K vs. 15K Freeform

shapes), finer geometric details further improve DeepMill’s predic-

tion accuracy, and the higher resolution amplifies the time advantage

of DeepMill over traditional geometric methods.

Fig. 6. The gallery of DeepMill prediction results. The top four are CAD

shapes, and the bottom five are freeform shapes. The cutter size used for

each shape is randomly generated. For each row of shapes, the first and third

columns show the inaccessible and occlusion regions predicted by DeepMill.

In the second and fourth columns, darker shades represent under-predicted

areas, while lighter shades indicate over-predicted areas.
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Table 1. Statistics of DeepMill and geometric method (section 4) on various

datasets. The values in ( ) indicate the average number of mesh vertices

in the dataset. Acc𝑖 and Acc𝑜 are the prediction accuracy for inaccessible

points and occlusion points, respectively. F1𝑖 and F1𝑜 represent their F1-

scores.𝑇𝑖 and𝑇𝑜 denote the calculation time (second) for inaccessible and

occlusion points by geometric method, while 𝑇 represents the total time.

We do not statistically analyze occlusion points for complex models due to

the excessive computation time required by geometric method.

DeepMill Geometric

DATASET Acc𝑖 F1𝑖 Acc𝑜 F1𝑜 𝑇 𝑇𝑖 𝑇𝑜 𝑇
CAD(7K) 96.3% 97.2% 98.3% 89.4% 0.01 4.0 25.1 29.1

CAD(15K) 96.3% 97.3% 98.3% 90.0% 0.01 17.3 207.4 224.7

Freeform(7K) 92.8% 93.7% 97.5% 86.5% 0.01 5.4 41.3 46.7

Freeform(15K) 93.2% 93.3% 98.0% 88.7% 0.02 19.8 373.1 392.9

Finely(100K+) 90.5% 90.0% \ \ 0.04 137.0 \ \

Fig. 7. Testing of DeepMill on finely-tessellated shapes. For each mesh, the

left side shows the prediction results from DeepMill, while the right side

displays the differences compared to the geometric method.

For different datasets, DeepMill exhibits varying performance: 1)

On CAD datasets with geometric styles similar to the training set,

DeepMill achieves up to 96.3% accuracy for predicting inaccessible

regions. Since occlusion regions are derived from inaccessible re-

gions, they present greater prediction challenges. 2) For freeform

shapes, which feature fewer sharp or weak geometric characteristics

and differ significantly from CAD shapes, the network maintains

high prediction accuracy (92.8%, 86.5%), demonstrating its ability

to effectively learn the geometric relationship between shapes and

cutters. 3) The finely-tessellated dataset consists of meshes with

a large number of triangular facets (over 100K), as shown in Fig-

ure 7. The intricate geometries increase prediction difficulty, and

for unconventional structures that diverge significantly from the

training set, DeepMill show reduced accuracy (e.g., top-right corner

of Figure 7).

Computation time. DeepMill offers significant advantages over

traditional geometric methods, achieving real-time predictions. For

inaccessible and occlusion regions, DeepMill requires only 0.004%

of the total time needed by geometric method (section 4) on CAD

shapes with 15K mesh vertices. For finely-tessellated shapes, the

time is reduced to 0.029% for inaccessible analysis only. Moreover,

Fig. 8. Comparison between DeepMill (red star) and the geometric method

(spot) [Mahdavi-Amiri et al. 2020] with varying numbers of sampled cutter

directions. The color bar indicates the number of cutter directions used in

the geometric method, and the vertical axis represents the accuracy of the

computed inaccessible points.

Table 2. Comparison statistics of the cutter module in DeepMill for test sets

with different cutter size. The baseline refers to the control group without

the cutter module. 𝐴𝑣𝑔𝑖 and 𝐴𝑣𝑔𝑓 represent the average values of accuracy

and F1-score, respectively. In the Uniform test set, the random range of

cutter parameters is the same as in the training set. In the Short set, the

ranges of𝐶𝐻 , 𝐹𝑅, and 𝐹𝐻 are [0.1, 0.2], [80, 100], and [0.1, 0.2], respectively.

In the Long set, the ranges are [10, 10.1], [5, 5.1], and [10, 10.1]. In the

Extreme set, the ranges are [20, 20.1], [5, 5.1], and [20, 20.1].

Cutter Decoder Acc𝑖 F1𝑖 Acc𝑜 F1𝑜 Avg𝑎𝑐𝑐 Avg𝑓 1

Uniform
Baseline 0.932 0.949 0.976 0.856 0.954 0.903

Our 0.963 0.972 0.983 0.894 0.973 0.933

Short
Baseline 0.898 0.916 0.972 0.838 0.935 0.877

Our 0.962 0.967 0.981 0.896 0.972 0.932

Long
Baseline 0.869 0.909 0.930 0.576 0.900 0.743

Our 0.940 0.960 0.961 0.763 0.951 0.862

Extreme
Baseline 0.809 0.873 0.901 0.388 0.855 0.631

Our 0.928 0.937 0.975 0.537 0.952 0.737

if finer cutter direction sampling is used in geometric methods, the

time efficiency of DeepMill becomes even more pronounced.

To further demonstrate the advantage of DeepMill, we compared

it with a single-threaded sampling-based approach [Mahdavi-Amiri

et al. 2020] on the CAD (15K) dataset. This geometric method per-

forms collision detection on triangle meshes and varies the number

of sampled cutter directions to adjust the accuracy of inaccessible

point estimation. As shown in Figure 8, DeepMill achieves a signifi-

cant efficiency advantage while maintaining competitive accuracy.

5.4 Ablation and Comparisons

Ablation study for cutter module. To demonstrate the effectiveness

of the cutter module, we compared it with the baseline model with-

out the cutter module. As shown in Table 2, DeepMill with the cutter

module significantly outperforms the baseline across test sets with

various cutter parameter ranges. This improvement is especially

noticeable when using short and long cutters, as the baseline model

tends to predict using an "average-sized cutter," resulting in a larger

accuracy gap compared to DeepMill. It is worth noting that some
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Fig. 9. Demonstration of DeepMill prediction results with extreme size

of cutter. After adding the dataset generated with extreme cutters to the

training set, DeepMill was able to extrapolate its prediction capability to

cases involving extreme cutters.

regions of the shape are inherently "cutter-independent," meaning

their accessibility remains unchanged regardless of cutter size. The

baseline successfully learns these regions, maintaining reasonable

prediction accuracy.

On the other hand, since shorter cutter sizes were used in the

training set, the ratio of local collisions to global collisions is rel-

atively small. As a result, DeepMill performs less accurately in

predicting occlusion regions caused by extensive local collisions

from extremely long cutters. To demonstrate it, we added 3K+ CAD

shapes with extreme cutter sizes to the training set for calculating

inaccessible and occlusion regions. The accuracy and F1-score for

the two regions improved to 95.8% and 87.8%, respectively. Figure 9
shows several examples.

Fig. 10. Comparison of cutter module concatenation methods. The top and

down show the prediction accuracy of inaccessible points and the F1 score

of occlusion regions for different concatenation methods on the same test

set. Our approach performs the best in both measures.

Fig. 11. Illustration of the effect of cutter length on inaccessible regions.

Generally, longer cutters lead to fewer inaccessible regions.

Comparison of cutter module positions. We compared the impact of

adding the cutter module at different positions in the decoder on the

prediction results. As shown in Figure 10, adding the module to each

layer, rather than only to the first or last layer of the decoder, enables

the network to better learn the influence of cutter parameters on

both local and global geometry.

Comparison of different cutter sizes. Figure 11 illustrates the effect

of cutter length on inaccessible regions. Short cutter is more prone

to collide with the shaft above cutter, resulting in larger inaccessible

regions. On the other hand, longer cutter is less likely to cause

collisions, allowing for more accessible regions.

Comparison with other network. To demonstrate the simplicity

and effectiveness of DeepMill, we constructed GNN-based frame-

work similar to the approach in [Huang et al. 2024b] for comparison.

See Figure 12, we used the classic GraphSAGEmodel [Hamilton et al.

2017]. Compared to GCN [Kipf andWelling 2016] or GAT [Veličković

et al. 2017], it is more suitable for high-resolutionmesh-based graphs

in accessibility analysis. However, significant global collisions exist

between the cutter and𝑀 , and occlusion points are often topologi-

cally distant from inaccessible points, making it difficult for graph

convolutions to efficiently capture this relationship.

In contrast, O-CNN-based architecture efficiently processes sparse

3D data through the octree structure, avoiding redundant computa-

tions. In accessibility analysis, CAD shapes often contain numerous

holes, grooves, etc., and O-CNN effectively captures these key sparse

geometric features. Additionally, the multi-scale convolution opera-

tion based on 3D space extracts shape features at different scales and

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



DeepMill: Neural Accessibility Learning for Subtractive Manufacturing • 9

Fig. 12. Comparisons with GraphSAGE.𝑀 is converted into a graph, with

nodes representing mesh vertices and edges representing topological con-

nections of them. Similar to O-CNN, initial node features include vertex co-

ordinates and normals. Node features are propagated and updated through

successive convolutions on neighboring nodes.

Fig. 13. Comparison with SAGE. DeepMill shows significantly better predic-

tion capabilities for inaccessible and occlusion regions compared to SAGE.

is more effective at capturing collision relationships between dis-

tant positions on the mesh. Furthermore, U-Net’s encoder-decoder

structure with skip connections enables it to capture both local

features and global context, preserving the detailed geometric in-

sights essential for predicting inaccessible points. Since rotating

𝑀 alters its accessibility, rotational invariance is not applicable in

this problem. Figure 13 presents the comparison results. DeepMill

significantly outperforms GraphSAGE, demonstrating its superior

ability to capture complex geometric interactions.

5.5 Discussion and Extension

Geometric symmetry. The geometric method in the dataset uses

Fibonacci sphere sampling for evenly distributed cutter directions,

as shown in Figure 14 (a). However, the directions lack axial symme-

try, causing asymmetric inaccessibility distributions for symmetric

shapes, as shown in Figure 14 (b). Another sampling method based

on spherical coordinates, shown in Figure 14 (c), achieves symmet-

ric direction distribution but suffers from uneven spacing, easily

missing directions. Surprisingly, DeepMill combines the strengths

of both methods, learning to symmetrically adjust predictions from

uniformly distributed directions. It produces more symmetric and

(a) (b) (c) (d)

Fig. 14. Geometric symmetry illustration. (a) Non-axisymmetric cutter sam-

pling causes asymmetric inaccessible regions (b). (c) Axisymmetric method

has uneven distribution. (d) DeepMill combines both, yielding more sym-

metrical inaccessible regions.

reasonable inaccessibility regions when predicting geometrically

symmetric shapes, as illustrated in Figure 14 (d).

Volume accessibility analysis. DeepMill can also be applied in

accessibility analysis for other machining methods. For instance,

rough machining removes the blank material layer by layer using

a mill cutter, which is typically the pre-process for the finishing

process. The accessibility analysis focuses on the interior volume of

the blank. We use the same collision detection method to detect the

interior sampling points of the bounding box of the input mesh to

generate datasets. As shown in Figure 15, after training on the new

dataset of over 5K CAD shapes, DeepMill can accurately predict the

inaccessible regions within the volume. Compared to surface-based

accessibility analysis, DeepMill can more easily predict accessibility

within the volume, achieving an accuracy of up to 97.9%. Volume

sampling uses voxelization, where adjacency resembles pixels in 2D,

making it more suitable for 3D convolution operations.

6 CONCLUSION AND FUTURE WORK

This paper introduces DeepMill, a deep learning framework that

improves cutter accessibility and manufacturability analysis for

complex designs. Utilizing octree-based convolutional neural net-

work (O-CNN), DeepMill efficiently predicts inaccessible regions

and occlusions across various cutter sizes, overcoming the scalability

and computational limitations of traditional methods. Its real-time

predictions enable faster design iterations and enhance production

efficiency. Additionally, the new dataset introduced supports fur-

ther research and development of robust manufacturability analysis

cutters, making DeepMill a significant advancement in the field.

Extensive testing and comparisons have demonstrated DeepMill’s

powerful cutter-aware prediction ability.

Based on the challenges and opportunities outlined, several direc-

tions for future work are proposed. First, to enhance the prediction

performance of our current network, integrating an attention mech-

anism will be a promising approach. Second, incorporating geomet-

ric prior knowledge, such as symmetry, similarity, and topological

properties, will allow the network to better capture the underly-

ing structures. Another promising avenue involves incorporating

cutters that work with irregular shapes in subtractive manufactur-

ing, which will broaden the applicability of our framework to a

wider range of real-world scenarios. Additionally, exploring the

downstream applications of our current framework, such as path

planning and model correction from non-accessible to accessible

models, would be an exciting direction for further development.
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Fig. 15. Illustration of accessibility analysis within the volume. The red

points represent inaccessible sampling points. On the top, the results pre-

dicted by DeepMill are shown, and on the bottom, the results obtained by

the geometric method are displayed.
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